
1

Credit: Zhichun Zhu, UIC. All copyrights
reserved.

Chip-level
Multithreading and
Multiprocessing

Introduction
Performance of a single serial program is
limited by its available ILP and long-latency
operations
Time-sharing

Multiprogramming workloads
Parallel applications

Synchronization
Thread-level Parallelism

Increase overall instruction throughput of the
processor

Thread

A full program (single-threaded UNIX
process)
An operating system thread, e.g., a
POSIX thread
A compiler-generated thread, e.g.
microthread
A hardware-generated thread

Exploit Thread-level Parallelism

Multiprocessor system
Shared memory

Cache coherence, memory consistency
Message passing

Multithreaded processor
Explicitly

Interleave the execution of instructions of different user-defined
threads (OS threads or processes)
Chip multiprocessors (CMP), fine-grained, coarse-grained, and
simultaneous multithreading (SMT)

Implicitly
Dynamically generate threads from single-threaded programs and
execute such speculative threads concurrent with the lead thread.
Multiscalar, dynamic multithreading, speculative multithreaded, ……

Explicitly Multithreading
Processors

Issuing instructions from multiple
threads in a cycle

CMP
SMT

Issuing instructions from a single
thread in a cycle

Fine-grained (FGMT)
Coarse-grained (CGMT)

Chip Multiprocessing
Replicate an entire processor core for each
thread to support multiple threads within a
single processor chip

L1 I$ L1 D$ L1 D$ L1 I$

Core 0 Core 1

L2 $

2

CMP

Advantage
Reduce latencies for processor-to-
processor communication and
synchronization

Drawback
More complicated uniprocessor vs. simple
CMPs
Lower frequency

Running Multiple Threads on One
Chip

A B

CMP FGMT CGMT SMT
Static partitioning of
execution resources

Spatial partition Temporal partition

Dynamic partitioning of
execution resources

Per cycle Per FU

Context switch overheadHorizontal loss

Vertical
loss

Fine-grained Multithreading
Provide two or more thread contexts on chip
Switch from one thread to the next on a
fixed, fine-grained schedule (e.g. every cycle)
Example: Tera MTA machine

128 threads (128 register contexts)
Switch threads on every clock cycle
Fully mask the 128-cycle memory access latency
(no cache)
Drawback: sacrifice single-thread performance for
overall throughput

Coarse-grained Multithreading

Provide multiple thread contexts within
the processor core
The currently active thread is executed
until it reaches a situation that triggers
a context switch (e.g. stalls on a long-
latency event, such as a cache miss)

Models of CGMT

Static: context switch occurs each time the
same instruction is executed

Explicit context switch instructions
Implicit-switch: switch-on-load, switch-on-store,
switch-on-branch
Advantage: low context switching overhead (0 or 1
cycle)
Disadvantage: switching contexts more often than
necessary

Models of CGMT

Dynamic: context switch is triggered by
a dynamic event

Switch-on-cache-miss, switch-on-signal,
switch-on-use
Advantage: reduce unnecessary context
switches
Disadvantage: higher context switching
overhead

3

Cost of Thread Switches

Dynamic events that trigger context switches
may only be detected late in the pipeline
Naïve implementation several pipeline
bubbles
Replicate registers for each thread and save
current state of pipeline at context switch
avoid switch penalty but increase complexity
Which approach should be used?

Fairness and Priority
Fairness

Cache miss rate + OS-controlled context switch
Threads with low miss rates are preempted after a time slice
expires
Threads are prevented from preemption for a minimum
quantum

Priority
Thread enters a critical section increase priority
Thread leaves a critical section reduce priority
Thread spins on a lock or enters an idle loop reduce priority

Simultaneous Multithreading
(SMT)

Allow instructions from multiple active
threads to be interleaved within and
across pipeline stages
Reduce both horizontal and vertical
losses
Maximize processor resource utilization

SMT Resource Sharing
Fetch0 Fetch1

Decode

Rename

Issue

Ex

Mem

Retire0 Retire1

Fetch0 Fetch1

Decode0

Rename

Issue

Ex

Mem

Retire0 Retire1

Decode1

Fetch0 Fetch1

Decode0

Ex

Mem

Retire0 Retire1

Decode1

Issue0

Rename0 Rename1

Issue1

SMT Sharing of Pipeline Stages

Dedicated low utilization
Shared complicated design, sometimes poor
performance
Fetch

Time-share an instruction cache port among
multiple threads
Branch predictor

Time-sharing, but
RAS and global BHR are better to be dedicated

SMT Sharing of Pipeline Stages

Decode
For RISC machines, major complexity is to resolve
dependences (O(n2) complexity); thus partitioning
would reduce complexity but could compromise
single-thread performance
For CISC machines, determining instruction
semantics and decomposing them can be very
complex, time-sharing the decode stage may be
more beneficial

4

SMT Sharing of Pipeline Stages

Issue
Selection must involve multiple threads
Wakeup is limited to intra-thread

Partition instruction window?

Execute
Sharing is straightforward
Design tradeoffs on bypass network

SMT Sharing of Pipeline Stages

Memory
Sharing cache ports is straightforward
Design tradeoff of load/store queue

Sharing potential consistency problem
Partitioning simpler but lower utilization

Retire
Partition or time-share

CMP vs. SMT

CMP is easier to implement
SMT can hide long latencies
SMT has better resource utilization
CMP + SMT?

IBM Power5

Comparisons between
Multithreading Schemes

All contexts concurrently
active; no switch

L2 cache, system interconnectCMP

All contexts concurrently
active; no switch

Everything but I-fetch buffers,
RAS, ARF, control logic/state, ROB,
SQ, …

SMT

Switch on pipeline stallEverything but I-fetch buffers, RF,
and control logic/state

Coarse-grained

Switch every cycleEverything but register file and
control logic/state

Fine-grained

Explicit OS context
switch

EverythingNone

Context Switch
Mechanism

Resources Shared between ThreadsMT Approach

Intel’s Hyper-Threading
Technology

A single physical processor appear as two
logical processors by applying a two-threaded
SMT approach
Each logical processor maintains a complete
set of the architecture state (general-
purpose registers, control registers, …)
Logical processors share nearly all other
resources, such as caches, execution units,
branch predictors, control logic, and buses

Intel’s Hyper-Threading
Technology

ROB entries, load and store buffer
entries are statically partitioned among
two threads
Partitioned resources are recombined
when only one thread is active
Add less than 5% to the relative chip
size
Improve performance by 16% to 28% on
server applications

5

Explicit vs. Implicit
Multithreading

Explicit
Improve instruction throughput
Programmer-created threads

Implicit
Improve individual application’s
performance
Dynamically generated threads

Challenges in IMT Processor
Designs

Resolving control dependences
Resolving register data dependences
Resolving memory data dependences

Resolving Control Dependences

Spawn implicit future threads at subsequent
control-independent points in the program’s
control flow

A

B

C

A

B

E

C D

A

B

C

E

F

G

H

Disjoint Eager Execution

Choose the branch path with the highest
cumulative prediction rate

0.75 0.25
0.56 0.19

0.42 0.14
0.32

0.24

1
2

3
4

5

Resolving Register Data
Dependences

Dependences within a thread
Resolved with standard techniques

Dependences across threads
Disallow interthread register data dependences,
communicate all shared operands through memory
with L/S
Compiler identify interthread dependences
explicitly
Data dependence speculation

Resolving Memory Data
Dependences

Interthread false dependences (WAR and
WAW)

Buffer writes from future threads and commit
them when those threads retire

Interthread true dependences (RAW)
Future threads assume no dependences violations +
extensions to snoop-based cache coherence
Track L/S from each thread in separate per-
thread L/S queues

6

Executing the Same Thread

Execute the same instructions in
multiple contexts
Fault detection (transient errors)
Prefetching
Branch resolution

Real Processor: IBM Power5
Each processor has two
full-performance
processor
Each core supports two-
way SMT
Right picture: a Power5
MCM with four
processor chips (16 logic
CPUs)
Each chip has 276M
Xtors, size 389mm2

POWER5 chief scientist Balaram Sinharoy
holding a POWER5 MCM (Multi-chip Module)

Further Reading

1. Reference book, Chapter 11,
“Executing Multiple Threads”

2. “A survey of processors with explicit
multithreading”, Theo Ungerer, Borut
Robic and Jurij Silc, ACM Computing
Surveys, Vol. 35, No. 1, March 2003,
pages 29-63

