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Chip-level 
Multithreading and 
Multiprocessing

Introduction
Performance of a single serial program is 
limited by its available ILP and long-latency 
operations
Time-sharing

Multiprogramming workloads
Parallel applications

Synchronization
Thread-level Parallelism

Increase overall instruction throughput of the 
processor

Thread

A full program (single-threaded UNIX 
process)
An operating system thread, e.g., a 
POSIX thread
A compiler-generated thread, e.g. 
microthread
A hardware-generated thread

Exploit Thread-level Parallelism

Multiprocessor system
Shared memory

Cache coherence, memory consistency
Message passing

Multithreaded processor
Explicitly

Interleave the execution of instructions of different user-defined 
threads (OS threads or processes)
Chip multiprocessors (CMP), fine-grained, coarse-grained, and 
simultaneous multithreading (SMT)

Implicitly
Dynamically generate threads from single-threaded programs and 
execute such speculative threads concurrent with the lead thread.
Multiscalar, dynamic multithreading, speculative multithreaded, ……

Explicitly Multithreading 
Processors

Issuing instructions from multiple 
threads in a cycle

CMP
SMT

Issuing instructions from a single 
thread in a cycle

Fine-grained (FGMT)
Coarse-grained (CGMT)

Chip Multiprocessing
Replicate an entire processor core for each 
thread to support multiple threads within a 
single processor chip
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CMP

Advantage
Reduce latencies for processor-to-
processor communication and 
synchronization

Drawback
More complicated uniprocessor vs. simple 
CMPs
Lower frequency

Running Multiple Threads on One 
Chip

A B

CMP FGMT CGMT SMT
Static partitioning of 
execution resources

Spatial partition Temporal partition

Dynamic partitioning of 
execution resources

Per cycle Per FU

Context switch overheadHorizontal loss

Vertical 
loss

Fine-grained Multithreading
Provide two or more thread contexts on chip
Switch from one thread to the next on a 
fixed, fine-grained schedule (e.g. every cycle)
Example: Tera MTA machine

128 threads (128 register contexts)
Switch threads on every clock cycle
Fully mask the 128-cycle memory access latency 
(no cache)
Drawback: sacrifice single-thread performance for 
overall throughput 

Coarse-grained Multithreading

Provide multiple thread contexts within 
the processor core
The currently active thread is executed 
until it reaches a situation that triggers 
a context switch (e.g. stalls on a long-
latency event, such as a cache miss)

Models of CGMT

Static: context switch occurs each time the 
same instruction is executed

Explicit context switch instructions
Implicit-switch: switch-on-load, switch-on-store, 
switch-on-branch
Advantage: low context switching overhead (0 or 1 
cycle)
Disadvantage: switching contexts more often than 
necessary

Models of CGMT

Dynamic: context switch is triggered by 
a dynamic event

Switch-on-cache-miss, switch-on-signal, 
switch-on-use
Advantage: reduce unnecessary context 
switches
Disadvantage: higher context switching 
overhead
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Cost of Thread Switches

Dynamic events that trigger context switches 
may only be detected late in the pipeline
Naïve implementation several pipeline 
bubbles
Replicate registers for each thread and save 
current state of pipeline at context switch 
avoid switch penalty but increase complexity
Which approach should be used?

Fairness and Priority
Fairness

Cache miss rate + OS-controlled context switch
Threads with low miss rates are preempted after a time slice 
expires
Threads are prevented from preemption for a minimum 
quantum

Priority
Thread enters a critical section increase priority
Thread leaves a critical section reduce priority 
Thread spins on a lock or enters an idle loop reduce priority

Simultaneous Multithreading 
(SMT)

Allow instructions from multiple active 
threads to be interleaved within and 
across pipeline stages 
Reduce both horizontal and vertical 
losses
Maximize processor resource utilization

SMT Resource Sharing
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SMT Sharing of Pipeline Stages

Dedicated low utilization
Shared complicated design, sometimes poor 
performance
Fetch

Time-share an instruction cache port among 
multiple threads
Branch predictor

Time-sharing, but 
RAS and global BHR are better to be dedicated

SMT Sharing of Pipeline Stages

Decode
For RISC machines, major complexity is to resolve 
dependences (O(n2) complexity); thus partitioning 
would reduce complexity but could compromise 
single-thread performance
For CISC machines, determining instruction 
semantics and decomposing them can be very 
complex, time-sharing the decode stage may be 
more beneficial
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SMT Sharing of Pipeline Stages

Issue
Selection must involve multiple threads
Wakeup is limited to intra-thread

Partition instruction window?

Execute
Sharing is straightforward
Design tradeoffs on bypass network

SMT Sharing of Pipeline Stages

Memory
Sharing cache ports is straightforward
Design tradeoff of load/store queue

Sharing potential consistency problem
Partitioning simpler but lower utilization

Retire
Partition or time-share

CMP vs. SMT

CMP is easier to implement
SMT can hide long latencies
SMT has better resource utilization
CMP + SMT?

IBM Power5

Comparisons between 
Multithreading Schemes

All contexts concurrently 
active; no switch

L2 cache, system interconnectCMP

All contexts concurrently 
active; no switch

Everything but I-fetch buffers, 
RAS, ARF, control logic/state, ROB, 
SQ, …

SMT

Switch on pipeline stallEverything but I-fetch buffers, RF, 
and control logic/state

Coarse-grained

Switch every cycleEverything but register file and 
control logic/state

Fine-grained

Explicit OS context 
switch

EverythingNone

Context Switch 
Mechanism

Resources Shared between ThreadsMT Approach

Intel’s Hyper-Threading
Technology

A single physical processor appear as two 
logical processors by applying a two-threaded 
SMT approach
Each logical processor maintains a complete 
set of the architecture state (general-
purpose registers,  control registers, …)
Logical processors share nearly all other 
resources, such as caches, execution units, 
branch predictors, control logic, and buses

Intel’s Hyper-Threading
Technology

ROB entries, load and store buffer 
entries are statically partitioned among 
two threads
Partitioned resources are recombined 
when only one thread is active
Add less than 5% to the relative chip 
size
Improve performance by 16% to 28% on 
server applications
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Explicit vs. Implicit 
Multithreading

Explicit
Improve instruction throughput
Programmer-created threads

Implicit
Improve individual application’s 
performance
Dynamically generated threads

Challenges in IMT Processor 
Designs

Resolving control dependences
Resolving register data dependences
Resolving memory data dependences

Resolving Control Dependences

Spawn implicit future threads at subsequent 
control-independent points in the program’s 
control flow
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Disjoint Eager Execution

Choose the branch path with the highest 
cumulative prediction rate
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Resolving Register Data 
Dependences

Dependences within a thread
Resolved with standard techniques

Dependences across threads
Disallow interthread register data dependences, 
communicate all shared operands through memory 
with L/S
Compiler identify interthread dependences 
explicitly
Data dependence speculation

Resolving Memory Data 
Dependences

Interthread false dependences (WAR and 
WAW)

Buffer writes from future threads and commit 
them when those threads retire

Interthread true dependences (RAW)
Future threads assume no dependences violations + 
extensions to snoop-based cache coherence
Track L/S from each thread in separate per-
thread L/S queues
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Executing the Same Thread

Execute the same instructions in 
multiple contexts
Fault detection (transient errors)
Prefetching
Branch resolution

Real Processor: IBM Power5
Each processor has two 
full-performance 
processor
Each core supports two-
way SMT
Right picture: a Power5 
MCM with four 
processor chips (16 logic 
CPUs)
Each chip has 276M 
Xtors, size 389mm2

POWER5 chief scientist Balaram Sinharoy 
holding a POWER5 MCM (Multi-chip Module)

Further Reading
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“Executing Multiple Threads”

2. “A survey of processors with explicit 
multithreading”, Theo Ungerer, Borut
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Surveys, Vol. 35, No. 1, March 2003, 
pages 29-63


