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Lecture 24: Power-efficient 
Designs

Dynamic and static power, processor 
power distribution, low power 
techniques in processor design, 
examples

Credits: Zhichun Zhu Thesis defense, HPCA’01 Low Power Tutorial, WRL 
Cacti Model
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Importance of Low-power Designs
Cost factor for high-end systems

High-end systems
Cooling and package cost

> 40 W: 1 W $1
Air-cooled techniques: reaching limits

Electricity bill
Reliability

Desktop PCs consume around 10% power in US

Usability of Portable systems:
Battery lifetime

Restriction factor for high-performance server 
design

Power determines processor density
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Processor Performance vs. Power Trends
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Dynamic vs. Static Power
Dynamic:

Charge/discharge 
capacitors when 
switching between 0 
and 1
Short-circuit 
currents on 
transitions

Static (Leakage)
From sub-threshold 
currents
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Sources of Power Consumption
Dynamic (dominant) [Tutorial:HPCA-7]

Static (2~5%) [Butts:MICRO-33]

fAVCPdync ⋅⋅⋅= 2
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leakdesignstatic IkVNP
)
⋅⋅⋅=

C: capacitance, V: supply voltage, A: activity factor, f: clock rate
N: # transistors, kdesign: design parameter, Ileak: leakage current 
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Importance of Low-power Architecture 
Designs

Low power CMOS and logic designs 
alone can no longer solve all power 
problems.
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Low-power Techniques
Physical (CMOS) level
Circuit level
Logic level
Architectural level
OS level
Compiler level
Algorithm/application level
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Power-aware Architecture Designs
Utilize low-power circuit techniques
Exploit application characteristics
Play an important role in low-power 
designs

Pentium III 800 MHz processor 
[CoolChip’00]

Scaled from Pentium Pro: 90 watts.
After architectural design and optimization: 
22 watts.
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Tradeoff between Performance and 
Power

Objects for general-purpose system
Reduce power consumption without
degrading performance

Common solution
Access/activate resources only when 
necessary

Question
When is necessary?
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Metrics for Power-Performance 
Efficiency

Performance (CPU time or Delay)

Power consumption (P)
Energy consumption (E)

f
CPIID 1

⋅⋅=

DPE ⋅=
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Metrics for Power-Performance 
Efficiency

In most cases
low power consumption        low performance

Energy-efficiency metric

)(  fPPf ∝⇒↓↓
)1(   fDDf ∝⇒↑↓

2PDDEEDP =⋅=
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Processor Power Distribution 
Example (Alpha 21264)

Power Consumption

Clock Issue Caches
FP Int Mem
I/O Others

Source: CoolChip Tutorial
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Low Power Processor Design 
Reduce power consumption of processor core

Voltage/frequency scaling: reduce supply voltage 
and/or frequency when processor is idle
Clock gating: disable clocks to inactive 
components
Pipeline gating: reduce mis-speculated instruction 
execution
Pipeline balancing: adjust effective pipeline ways 
for available IPC
Efficient issue logic: cluster structure, adjust 
effective issue queue size, no matching for ready 
entries, reducing tag matching entries
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Low Power Memory Design 
Reduce power consumption of memory 
components

Banked or hierarchical register file
Sub-banked cache
Sequential access or way prediction 
caches
Dynamically adjusting cache size
Decay cache for reducing static power
Low power DRAM with deep sleeping 
modes: four modes in Rambus
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Pipeline Gating
Mis-speculated instruction increase energy 
consumption, typically 16%-105% overhead 
Pipeline gating: stall fetching when 
confidence is low
Prevent “bad” instructions from entering the 
pipeline: may reduce 38% of wrong inst

fetch decode issue exe/wb commit

low confidence
BP counter

incr (when?)

decr> threshold?

stall

Pipeline gating: speculative control for energy
reduction, isca 1998
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Set Associative Cache
tag set offset

Mux 4:1
=?

To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Power per access: 4T + 4D
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Phased N-way Cache 
tag set offset

Mux 4:1
=?

To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Power per access: 4T + 1D
But access time increases
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Way-prediction N-way Cache
tag set offset

Mux 4:1 To CPU

tag0 data0 tag1 data1 tag2 data2 tag3 data3

Way-prediction

=?
To CPU

Correct prediction: 1T + 1D
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Low Power Server Design
Low power considerations in 
supercomputing

Is high-performance processor the best 
choice?
IBM Blue Gene: 64K nodes with PowerPC 
440 processors designed for low power

Power management for high-
performance servers

Meet performance with minimal active 
nodes
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Power Evaluation Tools
Processor

Wattch
Analytical

SimplePower
Analytical (e.g. cache)
Transition-sensitive (e.g. FU)

Cache
CACTI

Analytical
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Low Power Technique Summary
Power is critical in processor design: cost 
and dependability
Power distributions: clock, issue logic, cache, 
etc.
Architectural approaches

scale voltage, frequency, and/or pipeline width 
with required performance
reduce mis-speculated execution, eliminate 
unnecessary cache accesses and data
Many others

System approaches: high-performance by 
low power processors

Now low power is as important as performance


