Lecture 24: Power-efficient Designs

Dynamic and static power, processor power distribution, low power techniques in processor design, examples

Credits: Zhichun Zhu Thesis defense, HPCA'01 Low Power Tutorial, WRL Cacti Model

Importance of Low-power Architecture Designs

Low power CMOS and logic designs alone can no longer solve all power problems.

$$P_{dync} = \frac{1}{2} C \cdot V^2 \cdot A \cdot f$$

$$\begin{cases} V' = 0.7V \\ C' = 0.7 \times 2C \\ f' = 2f \end{cases} \Rightarrow P'_{dync} = 1.4P_{dync} \end{cases}$$

Power-aware Architecture Designs

- Utilize low-power circuit techniques
- Exploit application characteristics
- Play an important role in low-power designs
 - Pentium III 800 MHz processor [CoolChip'00]
 - Scaled from Pentium Pro: 90 watts.
 - After architectural design and optimization: 22 watts.

Objects for general-purpose system Reduce power consumption without degrading performance

- Common solution
 - Access/activate resources only when necessary
- Question
 - When is necessary?

Metrics for Power-Performance Efficiency

In most cases

low power consumption \iff low performance

11

- $\downarrow f \Rightarrow \downarrow P (P \propto f)$ • $\downarrow f \Rightarrow \uparrow D (D \propto \frac{1}{f})$
- •Energy-efficiency metric $EDP = E \cdot D = PD^{2}$

13

Low Power Memory Design

- Reduce power consumption of memory components
 - Banked or hierarchical register file
 - Sub-banked cache
 - Sequential access or way prediction caches
 - Dynamically adjusting cache size
 - Decay cache for reducing static power
 - Low power DRAM with deep sleeping modes: four modes in Rambus

14

- Power management for highperformance servers
 - Meet performance with minimal active nodes

19

21

20

Low Power Technique Summary Power is critical in processor design: cost and dependability Power distributions: clock, issue logic, cache, etc. Architectural approaches scale voltage, frequency, and/or pipeline width with required performance reduce mis-speculated execution, eliminate unnecessary cache accesses and data Many others System approaches: high-performance by low power processors Now low power is as important as performance