
1

1

Lecture 22 Shared-memory SMP: 
Examples and Performance

Adapted from UCB CS252 S01, Revised by Zhao Zhang
2

Review: Snoopy Cache Protocol
Write Invalidate Protocol:

Multiple readers, single writer
Write to shared data:  an invalidate is sent to all 
caches which snoop and invalidate any copies
Read Miss: 

Write-through: memory is always up-to-date
Write-back: snoop in caches to find most recent copy

Write Broadcast Protocol (typically write 
through):
Write serialization: bus serializes requests!

Bus is single point of arbitration
Good for a small number of processors; how 
about 16 or more?

3

Larger MPs
Separate Memory per Processor
Local or Remote access via memory controller
1 Cache Coherency solution: non-cached pages 
Alternative: directory per cache that tracks state of 
every block in every cache

Which caches have a copies of block, dirty vs. clean, ...
Info per memory block vs. per cache block?

PLUS: In memory => simpler protocol (centralized/one location)
MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache 
size)

Prevent directory as bottleneck? 
distribute directory entries with memory, each keeping 
track of which Procs have copies of their blocks

4

Distributed Directory MPs

Interconnection Network

Proc
+Cache

Memory

Dir

I/O

Proc
+Cache

Memory

Dir

I/O

Proc
+Cache

Memory

Dir

I/O

Proc
+Cache

Memory

Dir I/O

Proc
+Cache

Memory

Dir I/O

Proc
+Cache

Memory

Dir I/O

5

Directory Protocol
Similar to Snoopy Protocol: Three states

Shared: ≥ 1 processors have data, memory up-to-date
Uncached (no processor hasit; not valid in any cache)
Exclusive: 1 processor (owner) has data; 

memory out-of-date
In addition to cache state, must track which processors 
have data when in the shared state (usually bit vector, 1 
if processor has copy)
Keep it simple(r):

Writes to non-exclusive data 
=> write miss
Processor blocks until access completes
Assume messages received 
and acted upon in order sent

See textbook for directory state machine

6

Directory Protocol
No bus and don’t want to broadcast:

interconnect no longer single arbitration point
all messages have explicit responses

Terms: typically 3 processors involved
Local node where a request originates
Home node where the memory location 
of an address resides
Remote node has a copy of a cache 
block, whether exclusive or shared

Example messages on next slide: 
P = processor number, A = address



2

7

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

Processor P reads data at address A; 
make P a read sharer and arrange to send data back 

Write miss Local cache Home directory P, A
Processor P writes data at address A; 
make P the exclusive owner and arrange to send data back 

Invalidate Home directory Remote caches A
Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
Fetch the block at address A and send it to its home directory; 
invalidate the block in the cache

Data value reply Home directory Local cache Data
Return a data value from the home memory (read miss response)

Data write-back Remote cache Home directory A, Data
Write-back a data value for address A (invalidate response)

8

Parallel App: Commercial Workload
Online transaction processing workload (OLTP) 
(like TPC-B or -C)
Decision support system (DSS) (like TPC-D)
Web index search (Altavista)

Benchmark % Time
User
Mode

% Time
Kernel

% Time
I/O time
(CPU Idle)

OLTP 71% 18% 11%

DSS (range) 82-94% 3-5% 4-13%

DSS (avg) 87% 4% 9%

Altavista > 98% < 1% <1%

9

Alpha 4100 SMP
4 CPUs
300 MHz Apha 211264 @ 300 MHz
L1$ 8KB direct mapped, write through
L2$ 96KB, 3-way set associative
L3$ 2MB (off chip), direct mapped
Memory latency 80 clock cycles
Cache to cache 125 clock cycles

10

OLTP Performance as vary L3$ size

0

10

20

30

40

50

60

70

80

90

100

1 MB 2 MB 4 MB 8MB
L3 Cache Size

Idle
PAL Code
Memory Access
L2/L3 Cache Access
Instruction Execution

11

L3 Miss Breakdown

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

1 MB 2 MB 4 MB 8 MB
Cache size

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

12

Memory CPI as increase CPUs

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

L3: 2MB 2-way



3

13

OLTP Performance as vary L3$ size

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

32 64 128 256
Block size in bytes

Insruction

Capacity/Conflict

Cold

False Sharing

True Sharing

14

SGI Origin 2000
A pure NUMA
2 CPUs per node, 
Scales up to 2048 processors
Design for scientific computation vs. commercial 
processing
Scalable bandwidth is crucial to Origin

15

Parallel App: Scientific/Technical
FFT Kernel: 1D complex number FFT

2 matrix transpose phases => all-to-all communication
Sequential time for n data points: O(n log n)
Example is 1 million point data set

LU Kernel: dense matrix factorization
Blocking helps cache miss rate, 16x16
Sequential time for nxn matrix: O(n3)
Example is 512 x 512 matrix

16

FFT Kernel
FFT

0.0

0.5
1.0

1.5

2.0
2.5

3.0
3.5

4.0

4.5
5.0

5.5

8 16 32 64
Processor count

3-hop miss to remote
cache
Remote miss to home

Miss to local memory

Hit

17

LU kernel
LU

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

8 16 32 64
Processor count

3-hop miss to remote
cache
Remote miss to home

Miss to local memory

Hit

18

Parallel App: Scientific/Technical
Barnes App: Barnes-Hut n-body algorithm solving a 
problem in galaxy evolution

n-body algs rely on forces drop off with distance; 
if far enough away, can ignore (e.g., gravity is 1/d2)
Sequential time for n data points: O(n log n)
Example is 16,384 bodies

Ocean App: Gauss-Seidel multigrid technique to solve a 
set of elliptical partial differential eq.s’

red-black Gauss-Seidel colors points in grid to consistently 
update points based on previous values of adjacent neighbors
Multigrid solve finite diff. eq. by iteration using hierarch. Grid
Communication when boundary accessed by adjacent subgrid
Sequential time for nxn grid: O(n2)
Input: 130 x 130 grid points, 5 iterations



4

19

Barnes App
Barnes

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

8 16 32 64

Processor count

A
ve

ra
ge

 c
yc

le
s 

pe
r m

em
or

y 
re

fe
re

nc
e

3-hop miss to remote
cache
Remote miss to home

Miss to local memory

Hit

20

Ocean App
Ocean

0.0
0.5
1.0

1.5
2.0
2.5
3.0
3.5
4.0

4.5
5.0
5.5

8 16 32 64

A
ve

ra
ge

 c
yc

le
s 

pe
r r

ef
er

en
ce

3-hop miss to remote
cache
Remote miss

Local miss

Cache hit

21

Example: Sun Wildfire Prototype
1. Connect 2-4 SMPs via optional NUMA technology

1. Use “off-the-self” SMPs as building block
2.For example, E6000 up to 15 processor or I/O boards (2 

CPUs/board)
1. Gigaplane bus interconnect, 3.2 Gbytes/sec

3.Wildfire Interface board (WFI) replace a CPU board => 
up to 112 processors (4 x 28), 

1. WFI board supports one coherent address space across 4 SMPs
2. Each WFI has 3 ports connect to up to 3 additional nodes, each 

with a dual directional 800 MB/sec connection
3. Has a directory cache in WFI interface: local or clean OK, 

otherwise sent to home node
4. Multiple bus transactions

22

Example: Sun Wildfire Prototype
1.To reduce contention for page, has Coherent 

Memory Replication (CMR)
2.Page-level mechanisms for migrating and 

replicating pages in memory, coherence is still 
maintained at the cache-block level

3.Page counters record misses to remote pages 
and to migrate/replicate pages with high count

4.Migrate when a page is primarily used by a node
5.Replicate when multiple nodes share a page

23

Synchronization
Why Synchronize? Need to know when it is safe 
for different processes to use shared data
For large scale MPs, synchronization can be a 

bottleneck; techniques to reduce contention and 
latency of synchronization

Study textbook for details

24

Fallacy: Amdahl’s Law doesn’t apply to 
parallel computers

Since some part linear, can’t go 100X?

1987 claim to break it, since 1000X speedup
Instead of using fixed data set, scale data set with # 
of processors!
Linear speedup with 1000 processors



5

25

Multiprocessor Future
What have been proved for: multiprogrammed workloads, commercial 

workloads e.g. OLTP and DSS, scientific applications in some 
domains

Supercomputing 2004: High-performance computing is growing?!
Cluster systems are unexpectedly powerful and inexpensive
Optical networking is being deployed
Grid software is under intensive research
Claims: Students should learn parallel program from high school, and 
Undergraduates should be required to learn!

Multiprocessor advances
CMP or Chip-level multiprocessing, e.g. IBM Power5 (with SMT)
MPs no longer dominate TOP 500, but stay as the building blocks for 
clusters


