Lecture 22 Shared-memory SMP:
Examples and Performance

Adapted from UCB CS252 S01, Revised by Zhao Zhang

Review: Snoopy Cache Protocol

@ Write Invalidate Protocol:
= Multiple readers, single writer
= Write to shared data: an invalidate is sent to all
caches which snoop and /nvalidate any copies
= Read Miss:
+ Write-through: memory is always up-to-date
+ Write-back: shoop in caches to find most recent copy
# Write Broadcast Protocol (typically write
through):
# Write serialization: bus serializes requestsl!
= Bus is single point of arbitration
# Good for a small number of processors; how
about 16 or more?

Larger MPs

# Separate Memory per Processor
#Local or Remote access via memory controller
%1 Cache Coherency solution: non-cached pages
# Alternative: directory per cache that tracks state of
every block in every cache
= Which caches have a copies of block, dirty vs. clean, ...
# Info per memory block vs. per cache block?
= PLUS: In memory => simpler protocol (centralized/one location)
. MII\;US: In memory => directory is f{memory size) vs. f(cache
size
#Prevent directory as bottleneck?
distribute directory entries with memory, each keeping
track of which Procs have copies of their blocks

Distributed Directory MPs
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Directory Protocol

# Similar o Snoopy Protocol: Three states
= Shared: 2 1 processors have data, memory up-to-date
= Uncached (no processor hasit; not valid in any cache)
= Exclusive: 1 processor (owner) has data;
memory out-of-date
# In addition to cache state, must track which processors
have data when in the shared state (usually bit vector, 1
if processor has copy)
# Keep it simple(r):
= Writes fo non-exclusive data
=> write miss
= Processor blocks until access completes
= Assume messages received
and acted upon in order sent

See textbook for directory state machine

Directory Protocol

#No bus and don't want to broadcast:
= interconnect no longer single arbitration point
= all messages have explicit responses
#®Terms: typically 3 processors involved
= Local node where a request originates

= Home node where the memory location
of an address resides

= Remote node has a copy of a cache

block, whether exclusive or shared

#Example messages on next slide:
P = processor number, A = address




Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache P, A
= Processor P reads data at address A,
make P a read sharer and arrange to send data back
Write miss Local cache P, A
= Processor P writes data at address A,
make P the exclusive owner and arrange to send data back

Invalidate Remote caches A

» Invalidate a shared copy at address A.
Fetch Remote cache A

= Fetch the block at address A and send it to its home directory
Fetch/Invalidate Remote cache A

= Fetch the block at address A and send it to its home directory,
invalidate the block in the cache

Data value reply Local cache Data
= Return a data value from the home memory (read miss response)
Data write-back Remote cache A, Data

= Write-back a data value for address A (invalidate response)

Parallel App: Commercial Workload
#Online transaction processing workload (OLTP)
(like TPC-B or -C)
#Decision support system (DSS) (like TPC-D)
#®Web index search (Altavista)

Benchmark % Time % Time % Time
User Kernel I/O time
Mode (CPU Ide)
OLTP 71% 18% 11%

DSS (range) 82-94% 3-5% 4-13%
DSS (avg) 87% 4% 9%
Altavista > 98% <1% <1%

Alpha 4100 SMP
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OLTP Performance as vary L3$ size
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SGI Origin 2000
@A pure NUMA
@2 CPUs per node,
#Scales up to 2048 processors

#Design for scientific computation vs. commercial
processing

#Scalable bandwidth is crucial to Origin

Parallel App: Scientific/ Technical

#FFT Kernel: 1D complex number FFT
= 2 matrix transpose phases => all-to-all communication
= Sequential fime for n data points: O(n log n)
= Example is 1 million point data set
#LU Kernel: dense matrix factorization
= Blocking helps cache miss rate, 16x16
= Sequential fime for nxn matrix: O(n3)
= Example is 512 x 512 matrix
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Parallel App: Scientific/Technical

4 Barnes App: Barnes-Hut n-body algorithm solving a
problem in galaxy evolution
= n-body algs rely on forces drop of f with distance;
if far enough away, can ignore (e.g., gravity is 1/d?)
= Sequential time for n data points: O(n log n)
= Example is 16,384 bodies
# Ocean App: Gauss-Seidel multigrid technique to solve a
set of elliptical partial differential eq.s’
= red-black Gauss-Seidel colors points in grid to consistently
update points based on previous values of adjacent neighbors
= Multigrid solve finite diff. eq. by iteration using hierarch. Grid
= Communication when boundary accessed by adjacent subgrid
= Sequential time for nxn grid: O(n?)
= Input: 130 x 130 grid points, 5 iterations




Barnes App
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Example: Sun Wildfire Prototype

1. Connect 2-4 SMPs via optional NUMA technology
1. Use "off-the-self” SMPs as building block
2.For example, E6000 up to 15 processor or I/0 boards (2
CPUs/board)
1. Gigaplane bus interconnect, 3.2 Gbytes/sec
3.Wildfire Interface board (WFI) replace a CPU board =>
up to 112 processors (4 x 28),
1. WFI board supports one coherent address space across 4 SMPs

2. Each WFT has 3 ports connect o up to 3 additional nodes, each
with a dual directional 800 MB/sec connection

3. Has a directory cache in WFI interface: local or clean OK,
otherwise sent to home node
4. Multiple bus transactions
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Example: Sun Wildfire Prototype
1.To reduce contention for page, has Coherent
Memory Replication (CMR)

2.Page-level mechanisms for migrating and
replicating pages in memory, coherence is still
maintained at the cache-block level

3.Page counters record misses o remote pages
and to migrate/replicate pages with high count

4 Migrate when a page is primarily used by a node
5.Replicate when multiple nodes share a page
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Synchronization

#Why Synchronize? Need to know when it is safe
for different processes to use shared data

# For large scale MPs, synchronization can be a
bottleneck; techniques to reduce contention and
latency of synchronization

Study textbook for details
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Fallacy: Amdahl's Law doesn't apply to
parallel computers

@ Since some part linear, can't go 100X?

#1987 claim to break it, since 1000X speedup

= Instead of using fixed data set, scale data set with #
of processors!

= Linear speedup with 1000 processors
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Multiprocessor Future

What have been proved for: multiprogrammed workloads, commercial
workloads e.g. OLTP and DSS, scientific applications in some
domains

Supercomputing 2004: High-performance computing is growing?!
# Cluster systems are unexpectedly powerful and inexpensive
« Optical networking is being deployed

4 6rid software is under intensive research

@ Claims: Students should learn parallel program from high school, and
Undergraduates should be required to learn!

Multiprocessor advances
= CMP or Chip-level multiprocessing, e.g. IBM Power5 (with SMT)
= MPs no longer dominate TOP 500, but stay as the building blocks for
clusters
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