Lecture 22 Shared-memory SMP:
Examples and Performance

Adapted from UCB CS252 S01, Revised by Zhao Zhang

Review: Snoopy Cache Protocol

@ Write Invalidate Protocol:
= Multiple readers, single writer
= Write to shared data: an invalidate is sent to all
caches which snoop and /nvalidate any copies
= Read Miss:
+ Write-through: memory is always up-to-date
+ Write-back: shoop in caches to find most recent copy
Write Broadcast Protocol (typically write
through):
Write serialization: bus serializes requestsl!
= Bus is single point of arbitration
Good for a small number of processors; how
about 16 or more?

Larger MPs

Separate Memory per Processor
#Local or Remote access via memory controller
%1 Cache Coherency solution: non-cached pages
Alternative: directory per cache that tracks state of
every block in every cache
= Which caches have a copies of block, dirty vs. clean, ...
Info per memory block vs. per cache block?
= PLUS: In memory => simpler protocol (centralized/one location)
. MII\;US: In memory => directory is f{memory size) vs. f(cache
size
#Prevent directory as bottleneck?
distribute directory entries with memory, each keeping
track of which Procs have copies of their blocks

Distributed Directory MPs

Proc Proc Proc
+Cache, +Cache, +Cache,

[Memory—+—4 1/0 | [Memory—+— I/0 | [Memory—t+— I/0]

Dir Dir Dir
L Interconnection Network }

[Dir == 1/0 | [Dir }——{ T/0 | [Dir =i I/0]

Proc Proc Proc
+Cache, +Cache, +Cache,

4

Directory Protocol

Similar o Snoopy Protocol: Three states
= Shared: 2 1 processors have data, memory up-to-date
= Uncached (no processor hasit; not valid in any cache)
= Exclusive: 1 processor (owner) has data;
memory out-of-date
In addition to cache state, must track which processors
have data when in the shared state (usually bit vector, 1
if processor has copy)
Keep it simple(r):
= Writes fo non-exclusive data
=> write miss
= Processor blocks until access completes
= Assume messages received
and acted upon in order sent

See textbook for directory state machine

Directory Protocol

#No bus and don't want to broadcast:
= interconnect no longer single arbitration point
= all messages have explicit responses
#®Terms: typically 3 processors involved
= Local node where a request originates

= Home node where the memory location
of an address resides

= Remote node has a copy of a cache

block, whether exclusive or shared

#Example messages on next slide:
P = processor number, A = address

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache P, A
= Processor P reads data at address A,
make P a read sharer and arrange to send data back
Write miss Local cache P, A
= Processor P writes data at address A,
make P the exclusive owner and arrange to send data back

Invalidate Remote caches A

» Invalidate a shared copy at address A.
Fetch Remote cache A

= Fetch the block at address A and send it to its home directory
Fetch/Invalidate Remote cache A

= Fetch the block at address A and send it to its home directory,
invalidate the block in the cache

Data value reply Local cache Data
= Return a data value from the home memory (read miss response)
Data write-back Remote cache A, Data

= Write-back a data value for address A (invalidate response)

Parallel App: Commercial Workload
#Online transaction processing workload (OLTP)
(like TPC-B or -C)
#Decision support system (DSS) (like TPC-D)
#®Web index search (Altavista)

Benchmark % Time % Time % Time
User Kernel I/O time
Mode (CPU Ide)
OLTP 71% 18% 11%

DSS (range) 82-94% 3-5% 4-13%
DSS (avg) 87% 4% 9%
Altavista > 98% <1% <1%

Alpha 4100 SMP

OLTP Performance as vary L3$ size

#4 CPUs 100
#300 MHz Apha 211264 @ 300 MHz 90 1
#L1$ 8KB direct mapped, write through E ®
e = 704
#L2$ 96KB, 3-way set associative s aidie
. . 5 604 OPAL Code
#L.3$ 2MB (off chip), direct mapped £ 5 O Memory Access
mL2/L3 Cache Access
#Memory latency 80 clock cycles % w0 mL21L8 Cache Access
#Cache to cache 125 clock cycles g %04
2 20
10
0 ; ; ‘
1MB 2MB 4MB 8MB
9 L3 Cache Size 10
L3 Miss Breakdown Memory CPT as increase CPUs
3.25 1 3
34 v m Instruction
mInstruction i i
g 2757 o Capacity/Conflict| | £25 7732:::iﬂ|cUCapacny
825 oCold T E mFalse Sharing
B 2251 mFalse Sharing | — E 5| |mTrue Sharing -
£ 2/ @ True Sharing 2
8475 g A L
8 15 . 8] [
$1.25 s [=
z 1 fl— S— = 1 |
Eors — = g —
= 05 | =051 —
0.25 | |
o T T 0 . : :
1MB 2MmB 4mB 8 MB 1 2 4 6 8
Cache size i Processor count -3 2MB 2-way 12

OLTP Performance as vary L3$ size

16 7
15 1 []
14 _)
g 13 4 o Capacity/Conflict
12 1
= ocold
511 +—
E 10 — mFalse Sharing
E o |
g gl | B True Sharing
(=}
- 74+
g6
g i L —
]
= 3] | —
21|
14— |
0 T T T
32 64 128 256
Block size in bytes B

SGI Origin 2000
@A pure NUMA
@2 CPUs per node,
#Scales up to 2048 processors

#Design for scientific computation vs. commercial
processing

#Scalable bandwidth is crucial to Origin

Parallel App: Scientific/ Technical

#FFT Kernel: 1D complex number FFT
= 2 matrix transpose phases => all-to-all communication
= Sequential fime for n data points: O(n log n)
= Example is 1 million point data set
#LU Kernel: dense matrix factorization
= Blocking helps cache miss rate, 16x16
= Sequential fime for nxn matrix: O(n3)
= Example is 512 x 512 matrix

m 3-hop miss to remote

FFT
FFT Kernel cache

O Remote miss to home

5.0 1 @ Miss to local memory

@ 1 o Hit

0.5 1
00 B
8 16 32
Processor count

64

16

LU
LU kernel

5.5
m 3-hop miss to remote
o 30 cache
§ 4.5 OR te miss to home ——
4.0 . [
35 = Miss to local memory
E— 3.0 o Hit I—
% 25
o 2.0
@
215
g 10
< 0.5
00 B
8 16 32 64

Processor count

Parallel App: Scientific/Technical

4 Barnes App: Barnes-Hut n-body algorithm solving a
problem in galaxy evolution
= n-body algs rely on forces drop of f with distance;
if far enough away, can ignore (e.g., gravity is 1/d?)
= Sequential time for n data points: O(n log n)
= Example is 16,384 bodies
Ocean App: Gauss-Seidel multigrid technique to solve a
set of elliptical partial differential eq.s’
= red-black Gauss-Seidel colors points in grid to consistently
update points based on previous values of adjacent neighbors
= Multigrid solve finite diff. eq. by iteration using hierarch. Grid
= Communication when boundary accessed by adjacent subgrid
= Sequential time for nxn grid: O(n?)
= Input: 130 x 130 grid points, 5 iterations

Barnes App

Barnes

5.5 M 3-hop miss to remote
§ 5.0 cache
£as5 O R te miss to home
2 40
2 i
g5 @ Miss to local memory
g
£ 30 DHit
225
8
3 2.0
E, 1.5
£ 1.0 p— —
g

0.0 T T

8 16 32 64

Processor count

Ocean App
Ocean
55 m 3-hop miss to remote
cache
° 5.0 o0 Remote miss
2 45
g @ Local miss

o Cache hit

20

Example: Sun Wildfire Prototype

1. Connect 2-4 SMPs via optional NUMA technology
1. Use "off-the-self” SMPs as building block
2.For example, E6000 up to 15 processor or I/0 boards (2
CPUs/board)
1. Gigaplane bus interconnect, 3.2 Gbytes/sec
3.Wildfire Interface board (WFI) replace a CPU board =>
up to 112 processors (4 x 28),
1. WFI board supports one coherent address space across 4 SMPs

2. Each WFT has 3 ports connect o up to 3 additional nodes, each
with a dual directional 800 MB/sec connection

3. Has a directory cache in WFI interface: local or clean OK,
otherwise sent to home node
4. Multiple bus transactions

21

Example: Sun Wildfire Prototype
1.To reduce contention for page, has Coherent
Memory Replication (CMR)

2.Page-level mechanisms for migrating and
replicating pages in memory, coherence is still
maintained at the cache-block level

3.Page counters record misses o remote pages
and to migrate/replicate pages with high count

4 Migrate when a page is primarily used by a node
5.Replicate when multiple nodes share a page

22

Synchronization

#Why Synchronize? Need to know when it is safe
for different processes to use shared data

For large scale MPs, synchronization can be a
bottleneck; techniques to reduce contention and
latency of synchronization

Study textbook for details

23

Fallacy: Amdahl's Law doesn't apply to
parallel computers

@ Since some part linear, can't go 100X?

#1987 claim to break it, since 1000X speedup

= Instead of using fixed data set, scale data set with #
of processors!

= Linear speedup with 1000 processors

24

Multiprocessor Future

What have been proved for: multiprogrammed workloads, commercial
workloads e.g. OLTP and DSS, scientific applications in some
domains

Supercomputing 2004: High-performance computing is growing?!
Cluster systems are unexpectedly powerful and inexpensive
« Optical networking is being deployed

4 6rid software is under intensive research

@ Claims: Students should learn parallel program from high school, and
Undergraduates should be required to learn!

Multiprocessor advances
= CMP or Chip-level multiprocessing, e.g. IBM Power5 (with SMT)
= MPs no longer dominate TOP 500, but stay as the building blocks for
clusters

25

