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Cache Coherence and Memory 
Consistency
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An Example Snoopy Protocol
Invalidation protocol, write-back cache
Each block of memory is in one state:

Clean in all caches and up-to-date in memory (Shared)
OR Dirty in exactly one cache (Exclusive)
OR Not in any caches

Each cache block is in one state (track these):
Shared : block can be read
OR Exclusive : cache has only copy, its writeable, and 
dirty
OR Invalid : block contains no data

Read misses: cause all caches to snoop bus
Writes to clean line are treated as misses
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Snoopy-Cache State Machine-I 
State machine
for CPU requests
for each 
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State
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Snoopy-Cache State Machine-II
State machine
for bus requests
for each 

cache block
Appendix I gives 
details of bus 
requests

Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)
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Place read miss
on bus

Snoopy-Cache State Machine-III 
State machine
for CPU requests
for each 
cache block and
for bus requests
for each 

cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)
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Example

P1 P2 Bus Memory
step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValu

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

What happen if P1 reads A1 at this time?
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Implementation Snoop Caches
Write Races:

Cannot update cache until bus is obtained
Otherwise, another processor may get bus first, 
and then write the same cache block!

Two step process:
Arbitrate for bus 
Place miss on bus and complete operation

If miss occurs to block while waiting for bus, 
handle miss (invalidate may be needed) and then 
restart.
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Implementing Snooping Caches
Multiple processors must be on bus, access to 
both addresses and data
Add a few new commands to perform coherency, 
in addition to read and write
Processors continuously snoop on address bus

If address matches tag, either invalidate or update
Since every bus transaction checks cache tags, 
could interfere with CPU just to check: 

solution 1: duplicate set of tags for L1 caches just to 
allow checks in parallel with CPU
solution 2: L2 cache already duplicate, provided L2 
obeys inclusion with L1 cache
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MESI Protocol
Simple protocol drawbacks: When writing a block, send 

invalidations even if the block is used privately

Add 4th state (MESI)
Modfied (private,!=Memory)
eXclusive (private,=Memory)
Shared (shared,=Memory)
Invalid

Original Exclusive => Modified (dirty) or Exclusive (clean)
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MESI Protocol
From local processor P’s viewpoint, for each cache 

block
Modified: Only P has a copy and the copy has 
been modifed; must respond to any read/write 
request
Exclusive-clean: Only P has a copy and the copy 
is clear; no need to inform others about further 
changes
Shared: Some other machines may have copy; 
have to inform others about P’s changes
Invalid: The block has been invalidated (possibly 
on the request of someone else)
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Memory Consistency
Sequential Memory Access on Uniprocessor execution
A ← 10; // First Write to A
A ← 20; // Last write to A
Read A; // A will have value of 100

If “Read A” returns value 100, the execution is wrong!

Memory Consistency on Multiprocessor
P1 P2 P3 P4

Initial: A=B=0;
A ← 10; A==10 A==10 A==0
B ← 20; B==20 B==0 B==20

(Right) (Right) (Wrong?!)
What was expected?
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Sequential Consistency
Sequential consistency: All memory accesses are in 

program order and globally serialized, or
Local accesses on any processor is in program order
All memory writes appear in the same order on all processors

Any other processor perceives a write to A only when it 
reads A

Programmer’s view about consistency: how memory writes 
and reads are ordered on every processor
Programmer’s view on P3 Programmer’s view on P4
A←10; B←20; 
Read A (A==10); Read A (A==0); 
Read B (B==0); Read B (B==10);
B←20; A←10;
(Consistent) (Inconsistent!)



3

13

Sequential Consistency
Consider writes on two processors:

P1: A ← 0; P2: B ← 0;
..... .....

A ← 1; B ← 1;
L1: if (B == 0) ... L2: if (A == 0) ...

Is there an explanation that L1 is true and L2 is false?
Global View View from P1 View from P2
A ← 0 A ← 0 A ← 0
B ← 0 B ← 0 B ← 0
A ← 1 A ← 1 A ← 1
P1 Reads B L1: Read B==0 ---
P2 Reads A --- L2: Read A==1
B ← 1 B ← 1 B ← 1 

What is wrong if both statements (L1 and L2) be true? 
Can you find an explanation? 
If not, how would you prove there is no valid explanation?
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Sequential Consistency Overhead
What could have been wrong if both L1 and L2 are true?

P1: A ← 0; P2: B ← 0;
..... .....

A ← 1; B ← 1;
L1: if (B == 0) ... L2: if (A == 0) ...
A’s invalidation has not arrived at P2, and B’s invalidation
has not arrived at P1
Reading A or B happens before the writes

Solution I: Delay ANY following accesses (to the memory 
location or not) until an invalidation is ALL DONE.

Overhead: 
What is the full latency of invalidation? 
How frequent are invalidations? 
How about memory level parallelism?
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Memory Consistence Models
Why should sequential consistency be the only correct one?

It is just the most simple one
It was defined by Lamport

Memory consistency models: A contract between a multiprocessor 
builder and system programmers on how the programmers would 
reason about memory access ordering

Relaxed consistency models: A memory consistency that is weaker 
than the sequential consistency

Sequential consistency maintains some total ordering of reads and 
writes
Processor consistency (total store ordering): maintain program order of 
writes from the same processor
Partial store order: writes from the same processor might not be in 
program order
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Memory Consistency Models
P1: A ← 0; P2: B ← 0;

..... .....
A ← 1; B ← 1;

L1: if (B == 0) ... L2: if (A == 0) ...
Explain in processor consistency that both L1 and L2 are 

true:
View from P1 View from P2 Another view from P2

A ← 0 B ← 0 A ← 0
B ← 0 B ← 1 B ← 0
A ← 1 A ← 0 L2: Read A==0

L1: Read B==0 L2: Read A==0 A ← 1
B ← 1 A ← 1 B ← 1
(a) (b) (c)

(b) Remote writes appear in a different order
(c) Local reads bypasses local writes (relax W->R order)

Key point: programmers know how to reason about the 
shared memory
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Memory Consistency and ILP
Speculate on loads, flush on possible violations

With ILP and SC what will happen on this?
P1 code P2 code P1 exec P2 exec
A = 1 B = 1 issue “store A” issue “store B”
read B read A issue “load B” issue “load A”

commit A , send inv (winner) flush at load A
commit B, send inv

SC can be maintained, but expensive, so may also use 
TSO or PC

Speculative execution and rollback can still improve 
performance

Performance on contemporary multiprocessors: ILP + 
Strong MC  ≅ Weak MC


