
1

1

Lecture 18: VLIW and EPIC

Static superscalar, VLIW, EPIC and
Itanium Processor
(First introduce fast and high-
bandwidth L1 cache design)

2

Fast Cache Hit by Virtual Cache
Physical Cache – physically indexed and physically tagged

cache
Virtual Cache – virtually indexed and virtually tagged

cache
Must flush cache at process switch, or add PID
Must handle virtual address alias to identical physical address

TLB

P-tag

V-addr

P-tag P-index

P-addr

data

=?

TLB V-tag

P-index

V-addr

data

=?
P-addr
To L2

Physical
cache

Virtual
cache

PID

3

Fast Cache Hits by Avoiding
Translation: Process ID impact
Black is uniprocess
Light Gray is multiprocess
when flush cache
Dark Gray is multiprocess
when use Process ID tag
Y axis: Miss Rates up to
20%
X axis: Cache size from 2
KB to 1024 KB

4

Virtually Indexed, Physically Tagged
Cache
What motivation?

Fast cache hit by
parallel TLB access
No virtual cache
shortcomings

How could it be correct?
Require cache way size
<= page size; now
physical index is from
page offset
Then virtual and
physical indices are
identical ⇒ works like a
physically indexed
cache!

TLB P-tag

V-index

V-addr

data

=?
P-addr

What if want bigger
caches?
Higher associativity
moves barrier to right
Page coloring

5

Pipelined Cache Access
For multi-issue, cache bandwidth affects

effective cache hit time
Queueing delay adds up if cache does not have
enough read/write ports

Pipelined cache accesses: reduce cache cycle
time and improve bandwidth

Cache organization for high bandwidth
Duplicate cache
Banked cache
Double clocked cache

Key technology: Wave pipelining that does not
need latches

6

Pipelined Cache Access
Alpha 21264 Data cache design

The cache is 64KB, 2-way associative;
cannot be accessed within one-cycle
One-cycle used for address transfer and
data transfer, pipelined with data array
access
Cache clock frequency doubles processor
frequency; wave pipelined to achieve the
speed

2

7

Trace Cache
Trace: a dynamic sequence of instructions
including taken branches

Traces are dynamically constructed by
processor hardware and frequently used
traces are stored into trace cache

Example: Intel P4 processor, storing about
12K mops

(End of cache)

8

Two Paths to High ILP
Modern superscalar processors: dynamically

scheduled, speculative execution, branch
prediction, dynamic memory disambiguation,
non-blocking cache => More and more
hardware functionalities AND complexities

Another direction: Let complier take the
complexity

Simple hardware, smart compiler
Static Superscalar, VLIW, EPIC

9

MIPS Pipeline with pipelined multi-cycle
Operations

IF ID

M1 M2 M3 M4 M5 M6 M7

EX

A1 A2 A3 A4

M WB

DIV

Page A-50, Figure A.31

Pipelined implementations ex: 7 outstanding MUL, 4 outstanding
Add, unpipelined DIV.

In-order execution, out-of-order completion
Tomasulo w/o ROB: out-of-order execution, out-of-order

completion, in-order commit 10

More Hazards Detection and Forwarding
Assume checking hazards at ID (the simple way)
Structural hazards

Hazards at WB: Track usages of registers at ID, stall
instructions if hazards is detected
Separate int and fp registers to reduce hazards

RAW hazards: Check source registers with all EX
stages except the last ones.

A dependent instruction must wait for the producing
instruction to reach the last stage of EX
Ex: check with ID/A1, A1/A2, A2/A3, but not A4/MEM.

WAW hazards
Instructions reach WB out-of-order
check with all multi-cycle stages (A1-A4, D, M1-M7) for
the same dest register

Out-of-order completion complicates the
maintenance of precise exception
More forwarding data paths

11

Complier Optimization
Example: add a scalar to a vector:
for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

MIPS code
Loop:L.D F0,0(R1) ;F0=vector element

stall for L.D, assume 1 cycles
ADD.D F4,F0,F2 ;add scalar from F2
stall for ADD, assume 2 cycles
S.D 0(R1),F4 ;store result
DSUBUI R1,R1,8 ;decrement pointer
BNEZ R1,Loop ;branch R1!=zero
stall for taken branch, assume 1 cycle

12

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

Loop unrolling
1 cycle stall
2 cycles stall

3

13

Unrolled Loop That Minimizes Stalls

Called code
movement

Moving store past
DSUBUI
Moving loads before
stores

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; delayed branch slot

14

Register Renaming
1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D -8(R1),F4
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D -16(R1),F4
10 L.D F0,-24(R1)
11 ADD.D F4,F0,F2
12 S.D -24(R1),F4
13 DSUBUI R1,R1,#32
14 BNEZ R1,LOOP
15 NOP

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D -24(R1),F16
13 DSUBUI R1,R1,#32
14 BNEZ R1,LOOP
15 NOP

Original register renaming

15

VLIW: Very Large Instruction Word
Static Superscalar: hardware detects hazard, complier

determines scheduling
VLIW: complier takes both jobs

Each “instruction” has explicit coding for multiple
operations

There is no or only partial hardware hazard detection
No dependence check logic for instruction issued at the same
cycle
Wide instruction format allows theoretically high ILP

Tradeoff instruction space for simple decoding
The long instruction word has room for many operations
But have to fill with NOOP if no enough operations are found

16

VLIW Example: Loop Unrolling
Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 in this example)

17

Scheduling Across Branches
Local scheduling or basic block scheduling

Typically in a range of 5 to 20 instructions
Unrolling may increase basic block size to facilitate
scheduling
However, what happens if branches exist in loop
body?

Global scheduling: moving instructions across
branches (i.e., cross basic blocks)

We cannot change data flow with any branch outputs
How to guarantee correctness?
Increase scheduling scope: trace scheduling,
superblock, predicted execution, etc.

18

Problems with First Generation VLIW
Increase in code size

Wasted issue slots are translated to no-ops in
instruction encoding

About 50% instructions are no-ops
The increase is from 5 instructions to 45
instructions!

Operated in lock-step; no hazard detection HW
Any function unit stalls → The entire processor stalls
Compiler can schedule around function unit stalls, but
how about cache miss?
Compilers are not allowed to speculate!

Binary code compatibility
Re-compile if #FU or any FU latency changes; not a
major problem today

4

19

EPIC/ IA-64: Motivation in 1989
“First, it was quite evident from Moore's law that it

would soon be possible to fit an entire, highly
parallel, ILP processor on a chip.

Second, we believed that the ever-increasing
complexity of superscalar processors would have a
negative impact upon their clock rate, eventually
leading to a leveling off of the rate of increase in
microprocessor performance.”

Schlansker and Rau, Computer Feb. 2000

Obvious today: Think about the complexity of P4,
21264, and other superscalar processor;
processor complexity has been discussed in many
papers since mid-1990s

Agarwal et al, "Clock rate versus IPC: The end of the
road for conventional microarchitectures," ISCA
2000

20

EPIC, IA-64, and Itanium
EPIC: Explicit Parallel Instruction
Computing, an architecture framework
proposed by HP

IA-64: An architecture that HP and Intel
developed under the EPIC framework

Itanium: The first commercial processor
that implements IA-64 architecture; now
Itanium 2

21

EPIC Main ideas
Compile does the scheduling

Permitting the compiler to play the
statistics (profiling)

Hardware supports speculation
Addressing the branch problem: predicted
execution and many other techniques
Addressing the memory problem: cache
specifiers, prefetching, speculation on
memory alias

22

Example: IF-conversion

Use of predicated execution to perform if-
conversion: Eliminate the branch and produces just
one basic block containing operations guarded by the
appropriate predicates. Schlansker and Rau, 2000

Example of Itanium
code:

cmp.eq p1, p2 = rl, r2;;
(p1) sub r9 = r10, r11
(p2) add r5 = r6, r7

23

Memory Issues
Cache specifiers: compiler indicates cache
location in load/store; (use analytical models
or profiling to find the answers?)
Complier may actively remove data from
cache or put data with poor locality into a
special cache; reducing cache pollution
Complier can speculate that memory alias
does not exist thus it can reorder loads and
stores

Hardware detects any violations
Compiler then fixes up

24

Itanium: First Implementation by Intel
Itanium™ is name of first implementation of IA-
64 (2001)

Highly parallel and deeply pipelined hardware at
800Mhz
6-issue, 10-stage pipeline at 800Mhz on 0.18 µ
process

128 64-bit integer registers + 128 82-bit
floating point registers
Hardware checks dependencies
Predicated execution
128 bit Bundle: 5-bit template + 3 46-bit
instructions
- Two bundles can be issued together in Itanium

5

25

FPUIA-32
Control

Instr.
Fetch &
Decode Cache

Cache

TLB

Integer Units

IA-64 Control

Bus

Core Processor Die 4 x 1MB L3 cache

Itanium™ Processor Silicon
(Copyright: Intel at Hotchips ’00)

25M xtors 4x75M xtors
26

Compare with P4
42M Xtors

PIII: 26M
217 mm2

PIII: 106
mm2

L1 Execution
Cache

Buffer
12,000
Micro-Ops

8KB data cache
256KB L2$

27

Comments on Itanium
Remarkably, the Itanium has many of the
features more commonly associated with
the dynamically-scheduled pipelines
Performance: 800MHz Itanium, 1GHz
21264, 2GHz P4

SPEC Int: 85% 21264, 60% P4
SPEC FP: 108% P4, 120% 21264
Power consumption: 178% of P4 (watt per FP op)

Surprising that an approach whose goal is
to rely on compiler technology and simpler
HW seems to be at least as complex as
dynamically scheduled processors!

