
1

Prefetching
Techniques

2

Reading

Data prefetch mechanisms, Steven P.
Vanderwiel, David J. Lilja, ACM
Computing Surveys, Vol. 32 , Issue 2
(June 2000)

3

Prefetching

Predict future cache misses
Issue a fetch to memory system in
advance of the actual memory reference
Hide memory access latency

4

Examples
r1 r2 r3

r1 r2 r3

5

Basic Questions

1. When to initiate prefetches?
Timely

Too early replace other useful data (cache
pollution) or be replaced before being used
Too late cannot hide processor stall

2. Where to place prefetched data?
Cache or dedicated buffer

3. What to be prefetched?

6

Prefetching Approaches

Software-based
Explicit “fetch” instructions
Additional instructions executed

Hardware-based
Special hardware
Unnecessary prefetchings (w/o compile-
time information)

2

7

Side Effects and Requirements

Side effects
Prematurely prefetched blocks possible “cache
pollution”
Removing processor stall cycles (increase memory
request frequency); unnecessary prefetchings
higher demand on memory bandwidth

Requirements
Timely
Useful
Low overhead

8

Software Data Prefetching

“fetch” instruction
Non-blocking memory operation
Cannot cause exceptions (e.g. page faults)

Modest hardware complexity
Challenge -- prefetch scheduling

Placement of fetch inst relative to the matching
load or store inst
Hand-coded by programmer or automated by
compiler

9

Loop-based Prefetching

Loops of large array calculations
Common in scientific codes
Poor cache utilization
Predictable array referencing patterns

fetch instructions can be placed inside
loop bodies s.t. current iteration
prefetches data for a future iteration

10

Example: Vector Product
No prefetching

for (i = 0; i < N; i++) {

sum += a[i]*b[i];

}

Assume each cache block
holds 4 elements

2 misses/4 iterations

Simple prefetching
for (i = 0; i < N; i++) {

fetch (&a[i+1]);

fetch (&b[i+1]);

sum += a[i]*b[i];

}

Problem
Unnecessary prefetch
operations, e.g. a[1], a[2],
a[3]

11

Example: Vector Product (Cont.)

Prefetching + loop unrolling
for (i = 0; i < N; i+=4) {

fetch (&a[i+4]);

fetch (&b[i+4]);

sum += a[i]*b[i];

sum += a[i+1]*b[i+1];

sum += a[i+2]*b[i+2];

sum += a[i+3]*b[i+3];

}

Problem
First and last iterations

Prefetching + software
pipelining

fetch (&sum);

fetch (&a[0]);

fetch (&b[0]);

for (i = 0; i < N-4; i+=4) {

fetch (&a[i+4]);

fetch (&b[i+4]);

sum += a[i]*b[i];

sum += a[i+1]*b[i+1];

sum += a[i+2]*b[i+2];

sum += a[i+3]*b[i+3];

}

for (i = N-4; i < N; i++)

sum = sum + a[i]*b[i];

12

Example: Vector Product (Cont.)
Previous assumption:
prefetching 1 iteration ahead is
sufficient to hide the memory
latency
When loops contain small
computational bodies, it may be
necessary to initiate prefetches
δ iterations before the data is
referenced

δ: prefetch distance, l: avg
memory latency, s is the
estimated cycle time of the
shortest possible execution path
through one loop iteration

fetch (&sum);
for (i = 0; i < 12; i += 4){

fetch (&a[i]);
fetch (&b[i]);

}

for (i = 0; i < N-12; i += 4){
fetch(&a[i+12]);
fetch(&b[i+12]);
sum = sum + a[i] *b[i];
sum = sum + a[i+1]*b[i+1];
sum = sum + a[i+2]*b[i+2];
sum = sum + a[i+3]*b[i+3];

}

for (i = N-12; i < N; i++)
sum = sum + a[i]*b[i];





=
s
lδ

3

13

Limitation of Software-based
Prefetching

Normally restricted to loops with array
accesses
Hard for general applications with
irregular access patterns
Processor execution overhead
Significant code expansion
Performed statically

14

Hardware Inst. and Data Prefetching
No need for programmer or compiler intervention
No changes to existing executables
Take advantage of run-time information

E.g., Instruction Prefetching
Alpha 21064 fetches 2 blocks on a miss
Extra block placed in “stream buffer”
On miss check stream buffer

Works with data blocks too:
Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache;
4 streams got 43%
Palacharla & Kessler [1994] for scientific programs for 8 streams got
50% to 70% of misses from
2 64KB, 4-way set associative caches

Prefetching relies on having extra memory bandwidth that can be
used without penalty

15

Sequential Prefetching

Take advantage of spatial locality
One block lookahead (OBL) approach

Initiate a prefetch for block b+1 when block b is
accessed
Prefetch-on-miss

Whenever an access for block b results in a cache miss
Tagged prefetch

Associates a tag bit with every memory block
When a block is demand-fetched or a prefetched block is
referenced for the first time.

16

OBL Approaches

Prefetch-on-miss Tagged prefetch

demand-fetched
prefetched

demand-fetched
prefetched

demand-fetched
prefetched

0
1

prefetched1
prefetched1

17

Degree of Prefetching
OBL may not initiate prefetch far enough to
avoid processor memory stall
Prefetch K > 1 subsequent blocks

Additional traffic and cache pollution
Adaptive sequential prefetching

Vary the value of K during program execution
High spatial locality large K value
Prefetch efficiency metric
Periodically calculated
Ratio of useful prefetches to total prefetches

18

Stream Buffer

K prefetched blocks FIFO stream
buffer
As each buffer entry is referenced

Move it to cache
Prefetch a new block to stream buffer

Avoid cache pollution

4

19

Prefetching with Arbitrary
Strides

Employ special logic to monitor the
processor’s address referencing pattern
Detect constant stride array
references originating from looping
structures
Compare successive addresses used by
load or store instructions

20

Stream Buffer Diagram

DataTags

Direct
mapped
cache

one cache block of data
one cache block of data
one cache block of data
one cache block of data

Stream
buffer

tag and
comp
tag
tag
tag

head

+1

a
a
a
a

from processor to processor

tail

Shown with a single stream buffer
(way); multiple ways and filter may
be used

next level of cache

Source: Jouppi
ICS’90

21

Basic Idea
Assume a memory instruction, mi, references
addresses a1, a2 and a3 during three successive loop
iterations
Prefetching for mi will be initiated if

∆: assumed stride of a series of array accesses
The first prefetch address (prediction for a3)

A3 = a2 + ∆
Prefetching continues in this way until

021 ≠∆=− aa

nn aA ≠

22

Reference Prediction Table (RPT)

Hold information for the most recently
used memory instructions to predict
their access pattern

Address of the memory instruction
Previous address accessed by the
instruction
Stride value
State field

23

Organization of RPT
PC effective address

instruction tag previous address stride state

-

+

prefetch address

24

Example
float a[100][100], b[100][100], c[100][100];
...

for (i = 0; i < 100; i++)
for (j = 0; j < 100; j++)

for (k = 0; k < 100; k++)
a[i][j] += b[i][k] * c[k][j];

instruction tag previous address stride state
ld b[i][k] 50000 0 initial

ld c[k][j] 90000 0 initial

ld a[i][j] 10000 0 initial

ld b[i][k] 50004 4 trans

ld c[k][j] 90400 400 trans

ld a[i][j] 10000 0 steady

ld b[i][k] 50008 4 steady

ld c[k][j] 90800 800 steady

ld a[i][j] 10000 0 steady

5

25

Software vs. Hardware
Prefetching

Software
Compile-time analysis, schedule fetch instructions
within user program

Hardware
Run-time analysis w/o any compiler or user support

Integration
e.g. compiler calculates degree of prefetching (K)
for a particular reference stream and pass it on to
the prefetch hardware.

