
1

• CPU and memory unit interface

• CPU issues address (and data for write)
• Memory returns data (or acknowledgment for write)

The Main Memory Unit

Address
Data
Control

CPU Memory

2

• Provide adequate storage capacity
• Four ways to approach this goal

– Use of number of different memory devices with
different cost/performance ratios

– Automatic space-allocation methods in
hierarchy

– Development of virtual-memory concept
– Design of communication links

Memories: Design Objectives

3

• Location: Inside CPU, Outside CPU, External
• Performance: Access time, Cycle time, Transfer

rate
• Capacity: Word size, Number of words
• Unit of Transfer: Word, Block
• Access: Sequential, Direct, Random, associative
• Physical Type: Semiconductor, Magnetic, Optical

Memories: Characteristics

4

• Cost: c=C/S ($/bit)
• Performance:

– Read access time (Ta), access rate (1/Ta)
• Access Mode: random access, serial, semi-random
• Alterability:

– R/W, Read Only, PROM, EPROM, EEPROM
• Storage:

– Destructive read out, Dynamic, Volatility
• Hierarchy:

– Tape, Disk, DRUM, CCD, CORE, MOS, BiPOLAR

Memories: Basic Parameters

5

• Users want large and fast memories!

SRAM access times are 1 - 25ns at cost of $100 to $250 per Mbyte.
DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per Mbyte.

• Try and give it to them anyway
– build a memory hierarchy

Exploiting Memory Hierarchy

CPU

Level n

Level 2

Level 1

Levels in the
memory hierarchy

Increasing distance
from the CPU in

access time

Size of the memory at each level

6

Advantage of Memory Hierarchy

• Decrease cost/bit
• Increase capacity
• Improve average access time
• Decrease frequency of accesses to slow memory

7

• SRAM:
– value is stored on a pair of inverting gates
– very fast but takes up more space than DRAM

• DRAM:
– value is stored as a charge on capacitor
– very small but slower than SRAM (factor of 5/10)

Memories: Review

B

A A

B

Word line

Pass transistor

Capacitor

Bit line

8

• Storage cells are organized in a rectangular array
• The address is divided into row and column parts
• There are M (=2r) rows of N bits each
• The row address (r bits) selects a full row of N bits
• The column address (c bits) selects k bits out of N
• M and N are generally powers of 2
• Total size of a memory chip = M*N bits

– It is organized as A=2r+c addresses of k-bit
words

• To design an R addresses W-bit words memory, we
need |R/A| * |W/k| chips

Memories: Array Organization

9

4Mx64-bit Memory using 1Mx4 memory chip :

4

4

15

15

15

15

4

4

14

14

14

14

4

4

13

13

13

13

4

4

12

12

12

12

4

4

11

11

11

11

4

4

10

10

10

10

4

4

9

9

9

9

4

4

8

8

8

8

4

4

7

7

7

7

4

4

6

6

6

6

4

4

5

5

5

5

4

4

4

4

4

4

4

4

3

3

3

3

4

4

2

2

2

2

4

4

1

1

1

1

4

4

0

0

0

0

B0

B1

B2

B3

20 Addr
lines

Data out

Data in

24 23 22 - 13 12 - 3 2 1 0

Bank
Addr

Row Addresses Column Addresses Byte
Addr

Decoder

B3 B2 B1 B0

To select a
byte in 64 bit word

To all chips
column addresses

To all chips
row addresses

10

Locality

• A principle that makes memory hierarchy a good idea
• If an item is referenced

– temporal locality: it will tend to be referenced
again soon

– spatial locality: nearby items will tend to be
referenced soon.

• Why does code have locality?
• Our initial focus: two levels (upper, lower)

– block: minimum unit of data
– hit: data requested is in the upper level
– miss: data requested is not in the upper level

11

Memory Hierarchy and Access Time

• ti is time for access at level i
– on-chip cache, off-chip cache, main memory, disk, tape

• N accesses
– ni satisfied at level i
– a higher level can always satisfy any access that is

satisfied by a lower level
– N = n1 + n2 + n3 + n4 + n5

• Hit Ratio
– number of accesses satisfied/number of accesses made
– Could be confusing
– For example for level 3 is it n3/N or (n1+n2+n3)/N or n3/(N-

n1-n2)
– We will take the second definition

12

Average Access Time

• ti is time for access at level i
• ni satisfied at level i
• hi is hit ratio at level i

– hi = (n1 + n2 + …+ ni) /N
• We will also assume that data are transferred from

level i+1 to level i before satisfying the request
• Total time = n1*t1 + n2*(t1+t2) + n3*(t1+t2+t3) + n4*

(t1+t2+t3+t4) + n5*(t1+t2+t3+t4+t5)
• Average time = Total time/N
• t(avr) = t1+t2*(I-h1)+t3*(1-h2)+t4*(1-h3)+t5*(1-h4)
• Total Cost = C1*S1+C2*S2+C3*S3+C4*S4+C5*S5

13

• Two issues:
– How do we know if a data item is in the cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data
– "direct mapped"

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Cache

14

• Mapping:
– address is modulo the number of blocks in the

cache

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

01
0

01
1

10
0

10
1

11
0

11
1

15

• For MIPS:

What kind of locality are we taking advantage of?

Direct Mapped Cache

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex
0
1
2

1021
1022
1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

16

• Taking advantage of spatial locality:

Direct Mapped Cache

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

17

• Read hits
– this is what we want!

• Read misses
– stall the CPU, fetch block from memory, deliver to cache,

restart

• Write hits:
– can replace data in cache and memory (write-through)
– write the data only into the cache (write-back the cache later)

• Write misses:
– read the entire block into the cache, then write the word

Hits vs. Misses

18

• Make reading multiple words easier by using banks

• It can get a lot more complicated...

Hardware Issues

CPU

Cache

Bus

Memory

a. One-word-wide
 memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

19

• Increase in block size tend to decrease miss rate:

• Use split caches (more spatial locality in code)

Performance

1 KB
8 KB
16 KB
64 KB
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%
M

is
s

ra
te

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

20

Performance

• Simplified model:

execution time=(execution cycles + stall cycles)∗cct
• stall cycles= #of instructions∗miss ratio*miss penalty

• Two ways of improving performance:
– decreasing the miss ratio
– decreasing the miss penalty

What happens if we increase block size?

21

Compared to direct mapped, give a series of references that:
– results in a lower miss ratio using a 2-way set associative cache
– results in a higher miss ratio using a 2-way set associative cache

assuming we use the “least recently used” replacement strategy

Decreasing miss ratio with associativity

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

0

1

Tag Data

One way set associative
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

22

An implementation

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

23

Performance

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB
2 KB
4 KB
8 KB

M
is

s
ra

te

Associativity 16 KB
32 KB
64 KB
128 KB

24

Decreasing miss penalty with multilevel caches

• Add a second level cache:
– often primary cache is on the same chip as the processor
– use SRAMs to add another cache above primary memory

(DRAM)
– miss penalty goes down if data is in 2nd level cache

• Example:
– CPI of 1.0 on a 500Mhz machine with a 5% miss rate, 200ns

DRAM access
– Adding 2nd level cache with 20ns access time decreases miss

rate to 2%

• Using multilevel caches:
– try and optimize the hit time on the 1st level cache
– try and optimize the miss rate on the 2nd level cache

