Review Forwarding

Use temporary results, don’t wait for them to be written

— register file forwarding to handle read/write to same register
— ALU forwarding

cct  ccz  ccs  cca  cos  cce o7 CCE  GCo
Value of register 5210 10 10 10 10-20 -2 20 -2 -20
M X x X —20 X x x

Value of MEMWB : X x x x -20 x x x x
Program
execution order
(in nstructions)

sub 52, 51,83

and$12, 52,55

or$13,56,

adg $14,52, 52

sw$15, 100,

Stalling

Hardware detection and no-op insertion is called stalling
We stall the pipeline by keeping an instruction in the same stage

Program
exeaution cc1 ccz  ce3 o4

(ininstructions)

w2, 20(61)

and$4, 52,85
or$8, 52,96
2dd$9, 54,

- e =

Can't always forward

Load word can still cause a hazard:

— an instruction tries to read a register following a load
instruction that writes to the same register.

“Time (in clock cycies)
Program cc1 ccz2  cc3
execution
order
(in instructions)

w52, 20(51)

or$8, 52,96

add 59, 54,

sit$1, 56,57

Thus, we need a hazard detection unit to “stall” the load
instruction

Can't always forward

Load word can still cause a hazard:
— an instruction tries to read a register following a load instruction
that writes to the same register.

Time (in clock cycles)

Program cc cc2 ccs cca ccs cce ccr
execution

order
(in Instructions)

w52, 20($1)

or $8,52, 36
add §9,
sit$1, 56,87

Thus, we need a hazard detection unit to “stall” the load instruction

Hazard Detection Unit

Stall by letting an instruction that won’t write anything go
forward

\:\izmws
o
M
Registers -
Instuction —— g Dua
memory ' merary
A— M
IFAD RegisterRs
TFID RegisterRt
IFID RegiterRt el | (s
1F1D RegisierRd ZENY
oexregser | | |a

Branch Hazards

When we decide to branch, other instructions are in the pipeline!

Program Time (in clock cycles)
execution

cc1  cc2  cc3 cc4  CCSs

(in instructions)

40beq$1,$3,7
44and $12,$2, 85
48 0r $13, 36, 52

52.add $14, $2, 52

l= e
rowsdsas Im I -@.I.’ I ﬂrl e
We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong




Flushing Instructions

?

=

=

Where is the equality test? When and where instructions are flushed?

Flushing Example

and $12,52, 85 beq §1,83,7 sub $10,54, 58 before<t> before<z>

Clock 3

1]
|
i

Assume $1 == $3; which instruction will be affected?

Flushing Example (Cont)

w $4,50(57) bubble (nop) beq $1,83.7 sub$10, before<1>

Ti
i

Where is the and instruction? Does it make a difference to the program execution?

Clock 4 T

|
I

Improving Performance

« Try and avoid stalls! E.g., reorder these instructions:

1w $t0, 0($tl)
1w $t2, 4($tl)
sw $t2, 0($tl)
sw $t0, 4($tl)

+ Add a “branch delay slot”
— the next instruction after a branch is always executed
— rely on compiler to “fill” the slot with something useful

+ Superscalar: start more than one instruction in the same
cycle

Other Issues in Pipelines

« Exceptions
— Errors in ALU for arithmetic instructions
— Memory non-availability

« Exceptions lead to a jump in a program

+ However, the current PC value must be saved so that the
program can return to it back for recoverable errors

« Multiple exception can occur in a pipeline
« Preciseness of exception location is important in some cases
« 1/0 exceptions are handled in the same manner

Datapath/Controls to Handle Exceptions

[Emws

What is address 0x40000040? Where should be the ALU overflow signal?




Exception Example

R

Assume “add $1, $2, $1” overflows; which instructions to flush?

Exception Example (Cont)

Where is “sw $25, 1000(80)” from?

A Modern Pipelined Microprocessor
Instruction fetch In-order issue
and decode unit
Reservation || Reservation Reservation || Reservation
station station station station
Functional Integer Floating Load/ Out-of-order executs
units Integer o v point Store
In-order commit
Commit
unit
Big issue: complexity! How about dependence detection, forwarding, and exception
handling? 16

13
Superscalar Architecture
Where are the complexities?
15
Important Facts to Remember
+ Pipelined processors divide the execution in multiple steps
* However pipeline hazards reduce performance
— Structural, data, and control hazard
« Data forwarding helps resolve data hazards
— But all hazards cannot be resolved
— Some data hazards require bubble or noop insertion
« Effects of control hazard reduced by branch prediction
— Predict always taken, delayed slots, branch prediction table
— Structural hazards are resolved by duplicating resources
+ Time of n instructions depends on n, # of stages k, # of control hazard and
penalty of each step, # of data hazards and penalty for each
+ Time =n +k - 1 + load hazard penalty + branch penalty
* Load hazard penalty is 1 or 0 cycle depending on data use with forwarding
« branch penalty is 3, 2, 1, or zero cycles depending on scheme
17

Design and Performance Issues With Pipelining

« Pipelined processors are not EASY to design

« Technology affect implementation

« Instruction set design affect the performance, i.e., beq, bne
« More stages do not lead to higher performance

3.0

AN

3
g
20
E
2
g 15
2
g 10
o«
05
0.0 . . . . . .
1 2 4 8 16
Pipeline depth




Real Stuff: Pentium, Pentium Pro, Pentium 4 Pipeline

|Pru[uld| Decode | Decode | Execute Write-back

PS5 Microarchitecture

| Fetch Fetch |De:ode Decode | Decode | Rename | ROB Rel | Rey/Sch | Dispatch | Execute

P& Microarchitecturs

TC N TC Fetch Drive Allac Rename Queve | Sehedule
L L

Schedule| Schedule | Dispatch | Dispatch | Reg File | Reg Fle | Execute

Flags BranchCk Drive
MetEurst Microarchitecture
* Pentium (P5) = 5 stages
Pentium Pro, I, lll (P6) = 10 stages
+ Pentium 4 (NetBurst) = 20 stages
« What are critical to performance?

From “Pentium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00




