Review Forwarding

Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register

— ALU forwarding
Time (in clock
cc1 cc2 cc3 cca ccs cce cc7 ccs cco
Value of register $2 : 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EX'MEM : X X X -20 X X X X X
Value of MEMWB : X X X X -20 X X X X
Program

execution order
(in instructions)

sub 52, $1,$3
and $12, 52, $5
or $13, $6, 52

add $14, 52, 52

st 0] I I., Ir

Can't always forward

* Load word can still cause a hazard:
— an instruction tries to read a register following a load
instruction that writes to the same register.

Time (in clock cycles)

Program cc1 cc2 cc3
execution

(in instructions)
Iw $2, 20($1)

or $8, 52, $6

add $9,

sit$1, $6, $7

Thus, we need a hazard detection unit to “stall” the load
instruction

Stalling

Hardware detection and no-op insertion is called stalling
We stall the pipeline by keeping an instruction in the same stage

Program “Time (in clock cycles)
execution cc1

cc2 CC3 CcCc4 CC5

cce cc7 ccs cco cc1o
(ininstructions)

w52, 20(81)

and $4, 62,85

or $8, 52, $6

bubbl

add $9, $4, L/k’/@lj

sfeiha)e

sit$1, $6, §7 m I'II-’ IWI @

Can't always forward

Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction
that writes to the same register.

Time (in clock cycles)
Program cc1 cc2 ccs cc4 ccs cce
execution

order

(in instructions)

Iw $2, 20($1)

and $4,$2, $5

or $8, 52, $6

add $9, 54,

sit$1, $6, $7

Thus, we need a hazard detection unit to “stall” the load instruction

Hazard Detection Unit

.

Stall by letting an instruction that won’t write anything go

IDEX
Exz EM
L _NlEM/WB
17D X]
_ |]
5 | u
2 x
H Registers M
instruction | | £ | o, Daa ||
picton = memory M
- u
—~+—| M *
ol U I"
IF/ID RegisterRs .
TFID RogistorRt —
F/ID RegisterRd THed] e
— — v \;, —
ID/EX RegisterRt & Forvarding) VEMWE Rd
R \
-

Branch Hazards

* When we decide to branch, other instructions are in the pipeline!

Program Time (in clock cycles)
z:;ecr““"" cc1 cc2 cc3 cc4 CcC5 CC6 CC7 CC8 CCO

(in instructions)

40 beq $1,$3,7

44 and $12, $2, $5

48 or $13, 86, $2

52 add $14, $2, $2

72 Iw $4, 50(87)

ol @-I-> e

* We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong

Flushing Instructions

q =

© —” EXIMEM

Instruction

Registers.

L L‘,

Data
memory.

]
|

emor T (m
x

Where is the equality test? When and where instructions are flushed?

Flushing Example

and $12, $2, $5 beq $1,83,7 sub $10, $4, $8 before<1>

before<2>

Clock 3

Assume 31 == 83, which instruction will be affected?

Flushing Example (Cont)

Iw $4,50(87) bubble (nop) beq $1,8$3,7 sub $10, ... before<1>

Clock 4 T
\ \

Where is the and instruction? Does it make a difference to the program execution?

Improving Performance

* Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($tl)
1w $t2, 4($tl)
sw $t2, 0($tl)
sw $t0, 4($tl1)

* Add a “branch delay slot”
— the next instruction after a branch is always executed
— rely on compiler to “fill” the slot with something useful

» Superscalar: start more than one instruction in the same
cycle

Other Issues in Pipelines

* Exceptions
— Errors in ALU for arithmetic instructions
— Memory non-availability

« Exceptions lead to a jump in a program

* However, the current PC value must be saved so that the
program can return to it back for recoverable errors

« Multiple exception can occur in a pipeline
* Preciseness of exception location is important in some cases
« /O exceptions are handled in the same manner

11

10
Datapath/Controls to Handle Exceptions
| E ﬂJ I
J =t
— |
What is address 0x40000040? Where should be the ALU overflow signal? 12

Exception Example

Assume “add $1, $2, $1” overflows, which instructions to flush?

13

Exception Example (Cont)

o ——

Where is “sw $25, 1000(30)” from?

14

Superscalar Architecture

Where are the complexities?

15

A Modern Pipelined Microprocessor

Instruction fetch In-order issue
and decode unit

I
! {

Reservation Reservation . Reservation Reservation

station station station station

: Load/
Functional | |nteger Integer Out-of-order execut
p Store
units
In-order commit
Commit
unit

Big issue: complexity! How about dependence detection, forwarding, and exception
handling?

16

Important Facts to Remember

* Pipelined processors divide the execution in multiple steps
* However pipeline hazards reduce performance
— Structural, data, and control hazard
+ Data forwarding helps resolve data hazards
— But all hazards cannot be resolved
— Some data hazards require bubble or noop insertion
+ Effects of control hazard reduced by branch prediction
— Predict always taken, delayed slots, branch prediction table
— Structural hazards are resolved by duplicating resources

+ Time of n instructions depends on n, # of stages k, # of control hazard and
penalty of each step, # of data hazards and penalty for each

* Time =n+k-1+load hazard penalty + branch penalty
* Load hazard penalty is 1 or 0 cycle depending on data use with forwarding
« branch penalty is 3, 2, 1, or zero cycles depending on scheme

17

Design and Performance Issues With Pipelining

« Pipelined processors are not EASY to design

* Technology affect implementation

« Instruction set design affect the performance, i.e., beq, bne
* More stages do not lead to higher performance

3.0

25 f/\
2.0 / =
15

Relative performance

0.5

0.0 I I \ I I \

Pipeline depth

18

Real Stuff: Pentium, Pentium Pro, Pentium 4 Pipeline

Prafetch Cocode | Decode | Execute Write-back

F5 Microarchilecture

Fetch Fetch | Deeode | Decode | Decode | Rename | ROE Rel | Rdy/Sch | Dispateh | Execute

P& Microarchitectire

TC Mt [P TC Fetch Drive Alloc Rename Queue | Schedule

Schedule Schedule | Dispateh | Dispatch | Reg File | Reg File |~ Execute | Flags Branch €k Drive
MetBurst Microarchitectura

* Pentium (P5) = 5 stages

Pentium Pro, II, Il (P6) = 10 stages
* Pentium 4 (NetBurst) = 20 stages
» What are critical to performance?

From ium 4 (Partially) iewed,” Micropl Report, 8/28/00

19

