Pipelining

+ Reconsider the data path we just did
« Each instruction takes from 3 to 5 clock cycles
+ However, there are parts of hardware that are idle many time
+ We can reorganize the operation
+ Make each hardware block independent
— 1. Instruction Fetch Unit
— 2. Register Read Unit
— 3. ALU Unit
— 4. Data Memory Read/Write Unit
— 5. Register Write Unit
+ Units in 3 and 5 cannot be independent, but operations can be
+ Let each unit just do its required job for each instruction
« If for some instruction, a unit need not do anything, it can simply
perform a noop

Gain of Pipelining

« Improve performance by increasing instruction throughput
« Ideal speedup is number of stages in the pipeline
« Do we achieve this? No, why not?

Pipelining

+ What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

* What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

* We'll study these issues using a simple pipeline
« Other complication:
— exception handling
— trying to improve performance with out-of-order execution, etc.

Program
exatuon 2 . s s 0 w16 s
order Time T T T
(in instructions)
revacion oo
wst,00s0) [seion[wegl o | 222 s
wszz0060 T ses | l‘"s;ggm"lml AL |53;;; |Rug‘
—_——————
w83, 300(80) O o
Bns
Program
e, 2 . s s w0 u
i motructons)
wettooso [Pee] e w [22, Jreo]
wez oo 7w || e[aw |22, Jre)
I $3,300(50) o e[Jeeo| aw |22, Tees
TR TR T T T
IF: Instructon fotch | 10: Instruction docodo/ EX: Exccutol | MEM: Momory acoess | WB: Write back
Toaitor e road addross caloulation

—

« What do we need to add to actually split the datapath into stages?

Pipelined Data Path

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Corrected Data Path

D ex B0 o)

wsrten ||
memory

Pipeline Operation

« In pipeline one operation begins in every cycle

« Also, one operation completes in each cycle

« Each instruction takes 5 clock cycles (k cycles in general)
« When a stage is not used, no control needs to be applied
« In one clock cycle, several instructions are active

« Different stages are executing different instructions

* How to generate control signals for them is an issue

Graphically Representing Pipelines

Time (in clock cycles)

Program cc1 cc2 cc3 ccs cce

execution

e (M [] HE
v [EH HEH S L HE

« Can help with answering questions like:
— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 4?
— use this representation to help understand datapaths

Pipeline Control

[
— T

Pipeline control

+ We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back

+ How would control be handled in an automobile plant?
— afancy control center telling everyone what to do?
— should we use a finite state machine?

Pipeline Control

« Pass control signals along just like the data

Execution/Address Calculation | Memory access stage | stage control
stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg |Mem to|
i Dst Op1 Op0 Src |Branch| Read | Write | write Reg
R-format 1 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 1 1
El X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 [X
Instruction
\F1D ID/EX EXMEM MEMME

Data Path with Control

T

ERT)

Dependencies

Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards

Vaeof CC1 CC2 CC3 cc4 CCS cCs CCT

ccs oo
regstors2: 10 0 o

0 k20 - -2 -x0 -2
Program

order
(innsiructions)

b s2,51.53
and$12.52,55
ors13.56
add 514

sw$15, 100

Solution: Software No-ops/Hardware Bubbles

« Have compiler guarantee no hazards
* Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5

or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Problem: this really slows us down!

— Also, the program will always be slow even if a techniques like
forwarding is employed afterwards in newer version

+ Hardware can detect dependencies and insert no-ops in hardware by
not accepting a new instruction
— This is a bubble in pipeline and waste one cycle at all stages

— Need two or three bubbles between write and read of a register

14
Forwarding
« Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding
cc1 ooz coa cos cos cos ccr cos cos
Vaeofgserszs 0 0 10 10 om0 w20 -
Valuoof EXNIEN: X m X X
Vakioof MEMWB | X X X X w x X X X
nsucions)
sub 251,50
anas12,52,85
orsa. 6
adasie
awsis, 100
what f this 2 was 137
16

13
Stalling
+ Hardware detection and no-op insertion is called stalling
« We stall the pipeline by keeping an instruction in the same stage
Program
exeaution cc1 cc2 cc3 cc4 o5 CC6 CC7 OB CCO CCT0
(in instructions)
w2, 20(81)
and 2,85
or$8, 52,86
add$9, 9,
Sit$1, 96,57 m I'@ll" |r @
15
Forwarding
5
17

Can't always forward

+ Load word can still cause a hazard:

- an instruction tries to read a register following a load instruction that
writes to the same register.

Time (nclock cycles)

Pogam cci ccz cca co4 ccs cCe CC7T CCB CC9

(nnsiructons)
s, 20681)

4439,

ss1,56,57

Thus, we need a hazard detection unit to “stall” the load instruction

