Pipelining

+ Reconsider the data path we just did
« Each instruction takes from 3 to 5 clock cycles
+ However, there are parts of hardware that are idle many time
+ We can reorganize the operation
+ Make each hardware block independent
— 1. Instruction Fetch Unit
— 2. Register Read Unit
— 3. ALU Unit
— 4. Data Memory Read/Write Unit
— 5. Register Write Unit
+ Units in 3 and 5 cannot be independent, but operations can be
+ Let each unit just do its required job for each instruction
« If for some instruction, a unit need not do anything, it can simply
perform a noop

Gain of Pipelining

« Improve performance by increasing instruction throughput
« Ideal speedup is number of stages in the pipeline
« Do we achieve this? No, why not?

Pipelining

+  What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

*  What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

*  We'll study these issues using a simple pipeline
« Other complication:
— exception handling
— trying to improve performance with out-of-order execution, etc.
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« What do we need to add to actually split the datapath into stages?

Pipelined Data Path

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Corrected Data Path
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Pipeline Operation

« In pipeline one operation begins in every cycle

« Also, one operation completes in each cycle

« Each instruction takes 5 clock cycles (k cycles in general)
« When a stage is not used, no control needs to be applied
« In one clock cycle, several instructions are active

« Different stages are executing different instructions

* How to generate control signals for them is an issue

Graphically Representing Pipelines
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« Can help with answering questions like:
— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 4?
— use this representation to help understand datapaths

Pipeline Control
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Pipeline control

+ We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back

+ How would control be handled in an automobile plant?
— afancy control center telling everyone what to do?
— should we use a finite state machine?

Pipeline Control

« Pass control signals along just like the data
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Dependencies

Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards
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Solution: Software No-ops/Hardware Bubbles

« Have compiler guarantee no hazards
*  Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5

or $13, $6, $2
add  $14, $2, $2
sw $15, 100($2)

Problem: this really slows us down!

— Also, the program will always be slow even if a techniques like
forwarding is employed afterwards in newer version

+ Hardware can detect dependencies and insert no-ops in hardware by
not accepting a new instruction
— This is a bubble in pipeline and waste one cycle at all stages

— Need two or three bubbles between write and read of a register
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Forwarding
« Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding
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Stalling
+ Hardware detection and no-op insertion is called stalling
« We stall the pipeline by keeping an instruction in the same stage
Program
exeaution cc1  cc2  cc3 cc4 o5 CC6 CC7 OB CCO  CCT0
(in instructions)
w2, 20(81)
and 2,85
or$8, 52,86
add$9, 9,
Sit$1, 96,57 m I'@ll" |r @
15
Forwarding
5
17

Can't always forward

+ Load word can still cause a hazard:

- an instruction tries to read a register following a load instruction that
writes to the same register.
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Thus, we need a hazard detection unit to “stall” the load instruction




