Pipelining

* Reconsider the data path we just did
+ Each instruction takes from 3 to 5 clock cycles

* However, there are parts of hardware that are idle many time

* We can reorganize the operation

+ Make each hardware block independent

1. Instruction Fetch Unit
2. Register Read Unit
3. ALU Unit

5. Register Write Unit

4. Data Memory Read/Write Unit

* Units in 3 and 5 cannot be independent, but operations can be
* Let each unit just do its required job for each instruction
+ If for some instruction, a unit need not do anything, it can simply

perform a noop

Gain of Pipelining

* Improve performance by increasing instruction throughput
» Ideal speedup is number of stages in the pipeline

* Do we achieve this? No, why not?

Program

execution 2 4 6 8

order Time T T T

(in instructions)

Data
access

w$1,100(50) |"Srueion freg[ALy Reg

Iw $2,200($0)

lw $3, 300($0)

Program

Instruction
ch

Reg

ALU

Data

Reg
access

xecution
e Time T T T
order

(in instructions)

Iw $1,100($0) Data

access

Instruction

fetch ALY

Reg

Reg

Instruction

Iw $2, 200($0) fetch

2 ns Reg

Data
access

Reg

-~ i
Instruction

Iw $3,300($0) 2ns fetch

ALU

Data
access

Reg

2ns

2ns

2ns

2ns

Pipelining

What makes it easy

— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

* What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

+ We’ll study these issues using a simple pipeline
* Other complication:
— exception handling
— trying to improve performance with out-of-order execution, etc.

Basic Idea

IF: Instruction fetch

ID: Instruction decode/
register file read

EX:

Execute/

address calculation

MEM: Memory access

WB: Write back

* What do we need to add to actually split the datapath into stages?

Pipelined Data Path

MEM/WE

IFID. ID/EX EXIMEM

memory

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Corrected Data Path

P

b IFND ID/EX EXIMEM MEMWB
\

< Read
PO+l Address g register 1
daat
£ etor2
Instructon N Registers Read
g4 data2 [|
Wiite
data
16 2
\,| Sin
extend

Pipeline Operation

* In pipeline one operation begins in every cycle

» Also, one operation completes in each cycle

« Each instruction takes 5 clock cycles (k cycles in general)
* When a stage is not used, no control needs to be applied
* In one clock cycle, several instructions are active

- Different stages are executing different instructions

* How to generate control signals for them is an issue

Graphically Representing Pipelines

Time (in clock cycles)

Program
execution

order

(in instructions) I
-—I‘$—I'-I—- o[o et R e
v [N (R B A HE

* Can help with answering questions like:
— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 4?
— use this representation to help understand datapaths

CcC1 cC2 CcC6

Pipeline Control

0
m
u
X
[\
Fip EX/IMEM MEMWE
Add
4 —
] "
ress g Read
g
H Read data 1
Instruction L =] TN giters Read
-
1 Write — Address Read | —
| register data v
oata
Write x
i memory Dx
wiite
= data
Instruction
50 15 [goo |2 & | aw
extond {
Instruction \~ / /
20- 6] N
] T
M
Instruction u
: —|
1

Pipeline control

* We have 5 stages. What needs to be controlled in each stage?
Instruction Fetch and PC Increment

Instruction Decode / Register Fetch

Execution

Memory Stage

Write Back

*« How would control be handled in an automobile plant?
— afancy control center telling everyone what to do?
should we use a finite state machine?

10

Pipeline Control

* Pass control signals along just like the data

Execution/Address Calculation| Memory access stage | stage control

stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg [Mem to
Instruction Dst Op1 Op0 Src_|Branch| Read | Write | write | Reg
R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beg X 0 1 0 1 0 0 0 X

Instruction

IF/ID

ID/EX

EX/MEM MEM/WB

11

Data Path with Control

D/EX
,/ \ ° EXIMEM
[contro} N
) mswwa
\) L[
IF/ID _A—1¢ .
Add
Add rosult
= Shift "
left 2 e
< Read z
2 register 1 Read
£ data 1| |
G4
Instruction £ register 2
~ Registers Read
| Write data 2 [0 Address
register M
u
Write H e
| data L.l
Write
—~ data
7\ ‘
Instruction /
16 32 6 |
= o {oon [wemress]
extend |)

Instruction
[20- 16]

Instruction

12

Dependencies

* Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards

Time (in clock cycles)
Value of cc1 cc2 CC3 CC4 CC5 cCe6 cc7 ccs8 cc9
register $2: 10 10 10 10 10/-20 -20 -20 -20 -20

Program
execution
order

(in instructions)
sub 52, $1, $3 -@-I-’ I m j
R [}{}[izt
et s, [}{}[7;%j,

add $14, 2, @»
sw $15, 100/ @—

=
£l
T

13

Solution: Software No-ops/Hardware Bubbles

+ Have compiler guarantee no hazards
* Where do we insert the “no-ops” ?

sub $2, $1, 83
and $12, $2, $5

or $13, $6, $2
add $14, $2, $2
sw $15, 100(%$2)

Problem: this really slows us down!

— Also, the program will always be slow even if a techniques like
forwarding is employed afterwards in newer version

+ Hardware can detect dependencies and insert no-ops in hardware by
not accepting a new instruction

— This is a bubble in pipeline and waste one cycle at all stages
— Need two or three bubbles between write and read of a register

14

Stalling

Hardware detection and no-op insertion is called stalling

We stall the pipeline by keeping an instruction in the same stage

Program Time (in clock cycles)
execution cc1 cc2 CC3 CcCc4 CC5s CcCcé
order

ccr Cccs8 cc9o Ccc10
(in instructions)

Iw $2, 20($1) m I -@lll’

and $4, 52, $5

or $8, 52, $6

bubble
e
add $9, $4, 52
asisos |r s
15
Forwarding

Use temporary results, don’t wait for them to be written

— register file forwarding to handle read/write to same register
— ALU forwarding

Time (in clock cycle

cc1 cc2 cc3 cc4 ccs cce cc7 ccs cco

Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EXIMEM : X X X -20 X X X X X
Value of MEMWB : X X X X =20 X X X X

Program
execution order
(in instructions)

sub $2, $1, $3

and $12, 2, $5

or $13, $6, 52

add $14, 52, 52

sw §15, 100(52)

what if this $2 was $13?

16

Forwarding

N\ [l
AT —

E T
—

IFID —
— —
M
§ — u
x
& Registers
Instruction = Ty Sy
PO} memory memory M
I u
—f M x
bl u
x
IF/ID RegisterRs Rs T

IR —]
[

MEMWB RegisterRd

17

Can't always forward

* Load word can still cause a hazard:

— an instruction tries to read a register following a load instruction that
writes to the same register.

Time (in clock cycles)
Program cc1 cc2 cc3 cc4 ccs cce cc7 ccs cco
execution
order

(in instructions)

Iw 52, 20(81)

and 54, 52, $5

or $8, 52, $6

add $9, 54, §

slt $1, $6, $7

* Thus, we need a hazard detection unit to “stall” the load instruction

18

