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Pipelining

• Reconsider the data path we just did
• Each instruction takes from 3 to 5 clock cycles
• However, there are parts of hardware that are idle many time
• We can reorganize the operation
• Make each hardware block independent

– 1. Instruction Fetch Unit
– 2. Register Read Unit
– 3. ALU Unit
– 4. Data Memory Read/Write Unit
– 5. Register Write Unit

• Units in 3 and 5 cannot be independent, but operations can be
• Let each unit just do its required job for each instruction
• If for some instruction, a unit need not do anything, it can simply 

perform a noop
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Gain of Pipelining

• Improve performance by increasing instruction throughput
• Ideal speedup is number of stages in the pipeline
• Do we achieve this? No, why not?
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Pipelining

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards:   suppose we had only one memory
– control hazards:  need to worry about branch instructions
– data hazards:  an instruction depends on a previous instruction

• We’ll study these issues using a simple pipeline
• Other complication:

– exception handling
– trying to improve performance with out-of-order execution, etc.
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Basic Idea

• What do we need to add to actually split the datapath into stages?
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Pipelined Data Path

Can you find a problem even if there are no dependencies?  
What instructions can we execute to manifest the problem?
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Corrected Data Path
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Pipeline Operation

• In pipeline one operation begins in every cycle
• Also, one operation completes in each cycle
• Each instruction takes 5 clock cycles (k cycles in general)
• When a stage is not used, no control needs to be applied
• In one clock cycle, several instructions are active 
• Different stages are executing different instructions
• How to generate control signals for them is an issue
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Graphically Representing Pipelines

• Can help with answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths
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Pipeline Control
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• We have 5 stages.  What needs to be controlled in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Write Back

• How would control be handled in an automobile plant?
– a fancy control center telling everyone what to do?
– should we use a finite state machine?

Pipeline control
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• Pass control signals along just like the data

Pipeline Control
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Data Path with Control
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• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Dependencies
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• Have compiler guarantee no hazards
• Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Problem:  this really slows us down!
– Also, the program will always be slow even if a techniques like 

forwarding is employed afterwards in newer version

• Hardware can detect dependencies and insert no-ops in hardware by 
not accepting a new instruction
– This is a bubble in pipeline and waste one cycle at all stages
– Need two or three bubbles between write and read of a register

Solution: Software No-ops/Hardware Bubbles
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Stalling

• Hardware detection and no-op insertion is called stalling
• We stall the pipeline by keeping an instruction in the same stage
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• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register
– ALU forwarding

Forwarding

what if this $2 was $13?
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Forwarding
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• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that 

writes to the same register.

–

• Thus, we need a hazard detection unit to “stall” the load instruction

Can't always forward
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