
1

Pipelining

• Reconsider the data path we just did
• Each instruction takes from 3 to 5 clock cycles
• However, there are parts of hardware that are idle many time
• We can reorganize the operation
• Make each hardware block independent

– 1. Instruction Fetch Unit
– 2. Register Read Unit
– 3. ALU Unit
– 4. Data Memory Read/Write Unit
– 5. Register Write Unit

• Units in 3 and 5 cannot be independent, but operations can be
• Let each unit just do its required job for each instruction
• If for some instruction, a unit need not do anything, it can simply

perform a noop

2

Gain of Pipelining

• Improve performance by increasing instruction throughput
• Ideal speedup is number of stages in the pipeline
• Do we achieve this? No, why not?

Ins tru ction
fe tch R eg A LU D ata

access R eg

8 n s Ins tru ction
fe tch R eg A LU D ata

access R eg

8 n s Ins tru ction
fe tch

 8 ns

T im e

lw $ 1, 100 ($0)

lw $ 2, 200 ($0)

lw $ 3, 300 ($0)

2 4 6 8 1 0 1 2 14 16 1 8

2 4 6 8 1 0 1 2 14

...

P rog ram
e xecution
o rd er
(in instruc tions)

Ins truc tion
fe tch R eg ALU D a ta

access R eg

Tim e

lw $1 , 1 00 ($ 0)

lw $2 , 2 00 ($ 0)

lw $3 , 3 00 ($ 0)

2 ns
Ins truc tion

fetch R eg ALU D a ta
access R eg

2 ns
Ins truc tion

fe tch R eg ALU D a ta
access R eg

2 ns 2 n s 2 n s 2 ns 2 n s

P rog ram
e xecutio n
o rd er
(in in struc tio n s)

3

Pipelining

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards: suppose we had only one memory
– control hazards: need to worry about branch instructions
– data hazards: an instruction depends on a previous instruction

• We’ll study these issues using a simple pipeline
• Other complication:

– exception handling
– trying to improve performance with out-of-order execution, etc.

4

Basic Idea

• What do we need to add to actually split the datapath into stages?

In struct ion
memo ry

Add re ss

4

32

0

A dd A dd
result

S hift
left 2

Ins tru ction

M
u
x

0

1

Ad d

PC

0Write
data

M
u
x

1
R eg iste rs

Re ad
d ata 1

Re ad
d ata 2

R ea d
re gis ter 1

R ea d
re gis ter 2

16
Sign

e xte nd

W rite
re gis ter

W rite
d ata

R ead
da taAd dre ss

Da ta
me mo ry

1

A LU
result

M
u
x

A LU
Ze ro

IF: Ins truction fetch ID : Ins tru ction d ecode /
reg is ter file read

E X: Execu te /
a dd ress calcu la tion

M EM : M em ory acce ss W B: W rite back

5

Pipelined Data Path

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Instruction
memory

Address

4

32

0

Add Add
result

Shif t
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/W B

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

W rite
register

W rite
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

6

Corrected Data Path

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data
memory

1

ALU
result

M
u
x

ALU
Zero

ID/EX

7

Pipeline Operation

• In pipeline one operation begins in every cycle
• Also, one operation completes in each cycle
• Each instruction takes 5 clock cycles (k cycles in general)
• When a stage is not used, no control needs to be applied
• In one clock cycle, several instructions are active
• Different stages are executing different instructions
• How to generate control signals for them is an issue

8

Graphically Representing Pipelines

• Can help with answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths

IM R eg D M R e g

IM R eg D M R eg

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T im e (in c lock cycles)

lw $10 , 2 0($1)

P rog ram
e xecution
o rder
(in instruc tio ns)

sub $ 11 , $2, $3

ALU

AL U

9

Pipeline Control

PC

Instruction
memory

Address

In
st

ru
ct

io
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write
data

Read
data M

u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add Add
result

Shift
left 2

ALU
result

ALU
Zero

Add

0

1

M
u
x

0

1

M
u
x

10

• We have 5 stages. What needs to be controlled in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Write Back

• How would control be handled in an automobile plant?
– a fancy control center telling everyone what to do?
– should we use a finite state machine?

Pipeline control

11

• Pass control signals along just like the data

Pipeline Control

Execution/Address Calculation
stage control lines

Memory access stage
control lines

stage control
lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

C on tro l

E X

M

W B

M

W B

W B

IF /ID ID /E X E X /M E M M E M /W B

In struc tio n

12

Data Path with Control

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

13

• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Dependencies

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

14

• Have compiler guarantee no hazards
• Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Problem: this really slows us down!
– Also, the program will always be slow even if a techniques like

forwarding is employed afterwards in newer version

• Hardware can detect dependencies and insert no-ops in hardware by
not accepting a new instruction
– This is a bubble in pipeline and waste one cycle at all stages
– Need two or three bubbles between write and read of a register

Solution: Software No-ops/Hardware Bubbles

15

Stalling

• Hardware detection and no-op insertion is called stalling
• We stall the pipeline by keeping an instruction in the same stage

lw $2, 20($1)

Program
execution
order
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble

16

• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register
– ALU forwarding

Forwarding

what if this $2 was $13?

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

17

Forwarding

PC Instruction
memory

Registers

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data
memory

M
u
x

Forwarding
unit

IF/ID

In
st

ru
ct

io
n

M
u
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

18

• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that

writes to the same register.

–

• Thus, we need a hazard detection unit to “stall” the load instruction

Can't always forward

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program
execution
order
(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

