Simple Questions

* How many cycles will it take to execute this code?

1w $t2, 0($t3)
1w $t3, 4($t3)
beq $t2, $t3, Label #assume not
add §t5, $t2, $t3 «—
sw $t5, 8($t3)
Label: .

* What is going on during the 8th cycle of execution?
* In what cycle does the actual addition of $t2 and $t3 takes
place?

nuyuyuuryuyuduurryyryyyL

Implementing the Control

» Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed

» Use the information we’ve accumulated to specify a
finite state machine
— specify the finite state machine graphically, or
— use micro-programming

* Implementation can be derived from specification

Deciding the Control

« In each clock cycle, decide all the action that needs to be taken
* The control signal can be 0 and 1 or x (don’t care)
« Make a signal an x if you can to reduce control
« But any action that may destroy any useful value should not be allowed
« Control Signal required
— ALU: SRC1 (1 bit), SRC2(2 bits), operation (Add, Sub, or from FC)
— Memory: address (I or D), read, write, data clocked in IR or MDR
— Register File: address (rt or rd), data (MDR or ALUOUT), read, write
— PC: PCwrite, PCwrite-conditional, PC data (PC+4, branch, jump)
+ Some of the control signal can be implied (register file read are values
in A and B registers (actually A and B need not be registers at all)
« Explicit control vs indirect control (derived based on input like what
instruction is being executed, or what function code field is) bits

Graphical Specification of FSM

ALUSIcA =0
ALUSTB = 11
ALUOp =00

Start

ALUSrcA = 1
ALUSTB = 10
ALUOp =00

ALUSroA =1
ALUSIcB = 00
ALUOp= 10

PCSource = 10

RegDst=0
RegWrite

MemtoReg=1




Finite State Machine for Control PLA Implementation
- Implementation: o Ifl pufke:d a hgrlzontal or vertical line could you
explain it? o
e o >
o0 D
s D
Control logic - L{>.
0 D
|65
iputs
T
Instr. ister e 3
5
ROM Implementation ROM Implementation
+ ROM = "Read Only Memory" * How many inputs are there?
— values of memory locations are fixed ahead of time 6 bits for opcode, 4 bits for state = 10 address
* A ROM can be used to implement a truth table lines
— if the address is m-bits, we can address 2™ entries in the ROM. (i.e., 210 = 1024 different addresses)

— our outputs are the bits of data that the address points to.
ur outpu ' P * How many outputs are there?

16 datapath-control outputs, 4 state bits = 20

0000|0011
001[1100 outputs
m n 010/1100
VRN /L > 0111 000
Toilooo « ROMis 210 x 20 = 20K bits (and a rather unusual
0 000
110(0110 Size)
11110111

» Rather wasteful, since for lots of the entries, the
m is the "height", and n is the "width" outputs are the same
—i.e., opcode is often ignored




ROM vs PLA

+ Break up the table into two parts
— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 210 x 4 bits of ROM
— Total: 4.3K bits of ROM

* PLAis much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

+ Size is (#inputs x #product-terms) + (#outputs x #product-terms)
For this example = (10x17)+(20x17) = 460 PLA cells

* PLA cells usually about the size of a ROM cell (slightly bigger)

Another Implementation Style

* Complex instructions: the "next state
current state + 1

is often

10

9
Details
Dispatch ROM 1 Dispatch ROM 2
Op Opcode name Value op | Opcode name [ value
000000 R-format 0110 100011 _| 1w | o011
000010 imp 1001 101011_| s | o101
000100 E 1000 PLA )
100011 0010
101011 0010 1
N wiver / E:l
/ ) \
( )
N2 10/
i
opcode field
State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0 1 1

Microprogramming

o
;

‘ " n Datapath
I
G

Instruction register
opcode field

12




Microprogramming

+ A specification methodology
— appropriate if hundreds of opcodes, modes, cycles, etc.
— signals specified symbolically using microinstructions

ALU Register PCWrite
Label control |SRC1| SRC2 | control Memory control Sequencing
Fetch Add PC |4 Read PC |ALU Seq
Add PC Extshft |Read Dispatch 1
Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 |Func code |A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond |Fetch
JUMP1 Jump address |Fetch

*  Will two implementations of the same architecture have the same microcode?
*  What would a microassembler do?

13

Microinstruction format

Field name Value Signals active Comment
Add [ALUOD =00 Cause the ALU to add,
ALU control Subt [ALUOp =01 Cause the ALU to subtract; this implements the compare for
branches.
Func code ALUOD = 10 Use the instruction’s function code to determine ALU control.
SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSICB = 00 Redister B is the second ALU input.
SRC2 4 ALUSIcB = 01 Use 4 as the second ALU input.
Extend [ALUSICB = 10 Use output of the sign extension unit as the second ALU input.
Extshft [ALUSIcB = 11 Use the output of the shift-by-two unit as the second ALU input
Read Read two registers using the s and rt fields of the IR as the register
numbers and putting the data into reqisters A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and
Register RegDst =1, the contents of the ALUOUt as the data
control =0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst =0, the contents of the MDR as the data.
MemtoReq = 1
Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD =0 the MDR).
Memory Read ALU MemRead, Read memory using the ALUOUt as address; write result into MDR.
lorD = 1
Write ALU MemWrite, \Write memory using the ALUOut as address, contents of B as the
lorD =1 data.
ALU PCSource = 00 Wite the output of the ALU into the PC.
PCWrite
PC write control  [ALUOutcond  |PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOUL
jump address  |PCSource = 10, Wiite the PC with the jump address from the instruction.
PCWiite
Seq [AddrCtl = 11 Choose the next
Fetch [AddrCti = 00 Go to the first to bedin a new instruction.
Dispatch 1 [AddrCti = 01 Dispatch using the ROM 1.
Dispatch 2 [Addrcti = 10 Dispatch using the ROM 2.

Maximally vs. Minimally Encoded

* No encoding:
— 1 bit for each datapath operation
— faster, requires more memory (logic)
— used for Vax 780 — an astonishing 400K of memory!
* Lots of encoding:
— send the microinstructions through logic to get control signals
— uses less memory, slower
» Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode
— It’s easy to add new instructions

15

Microcode: Trade-offs

« Distinction between specification and implementation is sometimes
blurred

« Specification Advantages:
— Easy to design and write
— Design architecture and microcode in parallel
« Implementation (off-chip ROM) Advantages
— Easy to change since values are in memory
— Can emulate other architectures
— Can make use of internal registers
* Implementation Disadvantages, SLOWER now that:
— Control is implemented on same chip as processor
— ROM is no longer faster than RAM
— No need to go back and make changes

16




The Big Picture

Initial Finite state Microprogram
representation diagram prog
Yo v
Sequencing Explicit next Microprogram counter
control state function + dispatch ROMS
Yo v
Logic Logic Truth
representation equations tables
Ye— i
Implementation Programmable Read only
technique logic array memory

17

Other Issues: Exception

*  What should the machine do if there is a problem

* Two kinds of problems:

— External condition: I/O interrupt, power failure, user wanting to
stop the program, i.e. CTRL C
— Internal condition: incorrect memory address for instruction
read (branch or jump led to a non-existent memory location,
data read or write in data memory, illegal operation code,
arithmetic overflow and/or underflow
+ Interrupts (external) and exception (internal) are handled
similarly
* Control is transferred to an exception handling mechanism,
stored at a pre-specified location

* Address of instruction is saved in a register called EPC

18

Vectored Interrupts/Exceptions

* Address of exception handler depends on the
problem
— Undefined Instruction CO0 00 00 00
— Arithmetic Overflow C0 0000 20

— Addresses are separated by a fixed amount, 32 bytes in
MIPS

+ PC is transferred to a register called EPC

» If interrupts are not vectored, then we need another
register to store the cause of problem

* In what state what exception can occur?

19

Final Words on Single and Multi-Cycle Systems

+ Single cycle implementation
— Simpler but slowest
— Require more hardware

* Multi-cycle
— Faster clock
— Amount of time it takes depends on instruction mix
— Control more complicated

* Exceptions and Other conditions add a lot of
compexity

+ Other techniques to make it faster

20




Conclusions on Chapter 5

» Control is the most complex part

« Can be hard-wired, ROM-based, or micro-
programmed

» Simpler instructions also lead to simple control

* Just because machine is micro-programmed, we
should not add complicated instructions

* Sometimes simple instructions are more effective
than a single complex instruction

* More complex instructions may have to be
maintained for compatibility reasons

21




