
1

• ALU's operation based on instruction type and function code
– e.g., what should the ALU do with any instruction

• Example: lw $1, 100($2)

35 2 1 100

 op rs rt 16 bit offset

• ALU control input

000 AND001 OR010 add110 subtract111 set-on-less-than
• Why is the code for subtract 110 and not 011?

ALU Control

2

• Must describe hardware to compute 3-bit ALU conrol input
– given instruction type

00 = lw, sw
01 = beq,
10 = arithmetic

 11 = Jump
– function code for arithmetic

• Control can be described using a truth table:

ALUOp
computed from instruction type

ALU Control Information

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

3

Implementation of ALU Control

• Simple collection of gates to realize the truth tables

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

X1XXXXX1
XXXXXX1X

F0F1F2F3F4F5ALU
op0

ALU
op1

XX0XXXXX
XXXXXXX0

F0F1F2F3F4F5ALU
op0

ALU
op1

XXX1XXX1
1XXXXXX1

F0F1F2F3F4F5ALU
op0

ALU
op1

For operation2 = 1

For operation1 = 1

For operation1 = 1

How to handle X?

4

Implementation of Main Control

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

000000 R- 1 0 0 1 0 0 0 1 0
100000 lw 0 1 1 1 1 0 0 0 0
101011 sw X 1 X 0 0 1 0 0 0
000100 beq X 0 X 0 0 0 1 0 1

How to program PLA?

5

Datapath with Control and Jump Instruction

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

Where are the changes?

6

Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2BEQ/BNE BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

How does the format help performance?

7

Timing: Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

8

Where we are headed

• Single Cycle Problems:
– what if we had a more complicated instruction like floating

point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

9

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

SW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

R-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. OPERATE on
REG 1 / REG 2

4.

5. WRITE DST

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. SUB REG 2
from REG 1

4.

5.

JMP-Type:

1. READ

INST

2.

3.

4.

5.

10

• We will be reusing functional units
– Break up the instruction execution in smaller steps
– Each functional unit is used for a specific purpose in one cycle
– Balance the work load
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• At the end of cycle, store results to be used again
– Need additional registers

• Our control signals will not be determined solely by
instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach

11

• Finite state machines:
– a set of states and
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review: finite state machines

Next-state
functionCurrent state

Clock

Output
function

Next
state

Outputs

Inputs

12

Review: finite state machines

• Example:

B. 21 A friend would like you to build an “electronic eye” for use as a fake
security device. The device consists of three lights lined up in a row, controlled
by the outputs Left, Middle, and Right, which, if asserted, indicate that a light
should be on. Only one light is on at a time, and the light “moves” from left to
right and then from right to left, thus scaring away thieves who believe that the
device is monitoring their activity. Draw the graphical representation for the
finite state machine used to specify the electronic eye. Note that the rate of the
eye’s movement will be controlled by the clock speed (which should not be too
great) and that there are essentially no inputs.

13

Multi-Cycle DataPath Operation

M
U
X

PC

M
U
X

M
U
X

ALU

4
M
U
X

M
U
X

A
L
U

CONTROL

ALU
CON

ALUOP

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

Sign
Ext

I
R

MEM

Add

Data
Out

M
U
X

Data In

REG
FILE

RA1

RA2
RD1

RD2WA WD

A
R

B
R

D
R

MEM

Add

Data
Out

M
U
X

Data In

BR
COND

BEQ
BNE

JUMP

14

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch
Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

15

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer

Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

16

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a

branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

• We aren't setting any control lines based on the instruction
type

(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

17

• ALU is performing one of three functions, based on
instruction type

• Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);

• R-type:

ALUOut = A op B;

• Branch:

if (A==B) PC = ALUOut;

Step 3 (instruction dependent)

18

• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

• R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the
edge

Step 4 (R-type or memory-access)

19

• Reg[IR[20-16]]= MDR;

What about all the other instructions?

Step 5: Write-back step

20

Summary:

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

