Datapath & Control Design

+ We will design a simplified MIPS processor
« The instructions supported are
— memory-reference instructions: 1w, sw
— aritt ic-logical instr add, sub, and, or, slt
— control flow instructions: beq, j

* Generic Implementation:
— use the program counter (PC) to supply instruction address
— get the instruction from memory
— read registers
— use the instruction to decide exactly what to do
+ Allinstructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

What blocks we need

* We need an ALU
— We have already designed that
+ We need memory to store inst and data
— Instruction memory takes address and supplies inst
— Data memory takes address and supply data for Iw
— Data memory takes address and data and write into memory
+ We need to manage a PC and its update mechanism
« We need a register file to include 32 registers
— We read two operands and write a result back in register file
« Some times part of the operand comes from instruction
« We may add support of inmediate class of instructions
+ We may add support for J, JR, JAL

1 2
Simple Implementation More Implementation Details
* Include the functional units we need for each instruction
+ Abstract / Simplified View:
— | Insiuction
akies — [
e F L=
Insncion —{adress Read|
oy — = I3 3 | Regior#
Lo, Mm o
Wite Data }—! Register #
— e Do Insiucion
2 rnsien ey b Pregamcourter e Regto# et
R o Data
wtall a. Data memory unit Sign-extension unit
e | Sl 12 memory unt b. Sgnxt ¢
S| wie o . .
s Read] Why do we need this stuff? « Two types of functional units:
Daa{—b hte a2 — elements that operate on data values (combinational)
+ Example: ALU
' — elements that contain state (sequential)
2 Regsters bAU « Examples: Program and Data memory, Register File
3 4
Managing State Elements Building the Datapath
+ Unclocked vs. Clocked + Use multiplexors to stitch them together
« Clocks used in synchronous logic N -
— when should an element that contains state be updated? [
falling edge Add A6
I L .
address flemtoF
cycle time Insiruet Address Readl
rising edge e o | |
i Wite memory
data
5 6

Latches and Flip-flops

« Output is equal to the stored value inside the
element
(don't need to ask for permission to look at the
value)
— "logically true” could mean electrically low
« Change of state (value) is based on the clock
« Latches: whenever the inputs change, and the
clock is asserted
« Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

An unclocked state element

* The set-reset latch
— output depends on present inputs
— If present inputs are 00, then it depends on the past inputs
— What happens if R=1, $=1?

3

o

7 8
D-latch D flip-flop
* Two inputs: + Output changes only on the clock edge
— the data value to be stored (D)
— the clock signal (C) indicating when to read & store D T S
* Two outputs: e
— the value of the internal state (Q) and its complement
T S
@% [P e B °
Lo JER D I R
o] S e °
— L
9 10
Our Implementation Register File
« An edge triggered methodology + Built using D flip-flops
« Typical execution: Reas gt
— read contents of some state elements,
— send values through some combinational logic -
— write results to one or more state elements oxd g R
11 12

Data Path Composition

Data paths for inst classes Data path stages

1. Arithmetic-logic * Instruction fetch
2. Memory references * Read operands
3. Branch and Jump * ALU operation

* Memory access

* Register write

Instruction Fetch

* PC determines the next instruction to fetch (and to
execute)

« Branch and jump changes PC

Read
address

Instruction —

* PC Update
13 14
Datapath for R-type Instructions Datapath for Memory Reference Instructions
1. Instruction fetch 3. ALU: perform the 1. Instruction fetch 3. ALU: calculating effective
2. Read registers: for the arithmetic-logic operation 2. Read registers: base address
two source operands 4. Write register: to the address and data (for load) 4. Memory access: read/write
destination register data
5. Write register (for store)
Read | Read
register 1 Read register 1 dR‘ea‘d ‘v mWr
data 1 | |Read ata
Instruction ?e;a:le' 2 Lo reg‘s‘erRzegls«ers
Registers | |write Address Read|
Write register Read cata
register Read . nge data 2 bata
. data 2 o memor
X‘gll;e RegWrit wite i
RegWrite ¢ MemRea
15 16
Datapath for Branch Instructions A Complete Datapath for Core Instructions
i * Supports Lw, Sw, Add, Sub, And, Or, Sit, and Beq
1. Instruction fetch 3. ALU: compare two Al i id ified
2. Read registers: two operands control lines identifie
operands in beq 4. Update PC
;
@ nsncion25-21
™ Read
) akross st 20-181
F . recten | |ranctontt-17 (x“] Z
AL Zeo— (0T | i
Insiruction [15-0] ’
17 18

What Else is Needed in Datapath

« Support for j and jr
— For both of them PC value need to come from somewhere else

— For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR
(27:2) and 2 bits are zero (1:0)

— For JR, PC value comes from a register
« Support for JAL
— Address is same as for J inst
— OLD PC needs to be saved in register 31
« And what about immediate operand instructions
— Second operand from instruction, but without shifting
« Support for other instructions like lw and immediate inst write

Single-cycle Implementation

« Execute every instruction in one cycle
— Simple implementation with simple control
« We wait for everything to settle down, and the right thing to
be done
— ALU might not produce “right answer” right away
— We use write signals along with clock to determine when to write
— No single element can be used twice

« Cycle time determined by length of the longest path

Clack ey m

We will study more clever implementation

19 20
Adding Control to Datapath Main Control Descriptions
{ Signal name | When deasserted When asserted
A/‘}_r = RegDst Dest reg number « $rt | Dest reg number « $rd
. - RegWirte Write register
ALUSrc 2nd ALU input « $rt 2nd ALU input « I-field
; ; [
= Bz | L.] PCSrc PC < PC+4 PC « address ALU output
Uj s “_B—-{ . Lr - M[] (Branch)
M\ | MemRead Enable data memory read
MemWrite Enable data memory write
Memto- | Reg | Mem | M "
RegDst | ALUSrc eRr:uo W:Ige Reea"d‘ W:rt'; Branch | ALUOp1 | ALUp0 MemtOReg Reg data < main ALU Reg data< data memory
R-format 1 0 0 1 o | o 0 1 0 o output
1w 0 1 1 1 [110 0 0 0
o X 1 X 010 1 0 0 0 Q: What determines the values of those signals?
beq X 0 X 0 0 0 1 0 1
21 22

