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• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions:  lw, sw
– arithmetic-logical instructions:  add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:
– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why?  memory-reference?  arithmetic? control flow?

Datapath & Control Design
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• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

What blocks we need
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Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?
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• Abstract / Simplified View:

• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU

– elements that contain state (sequential)
• Examples: Program and Data memory, Register File

More Implementation Details
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• Unclocked vs. Clocked
• Clocks used in synchronous logic 

– when should an element that contains state be updated?

cycle time
rising edge

falling edge

Managing State Elements
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Building the Datapath

• Use multiplexors to stitch them together
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• Output is equal to the stored value inside the 
element

(don't need to ask for permission to look at the 
value)
– "logically true” could mean electrically low

• Change of state (value) is based on the clock
• Latches:  whenever the inputs change, and the 

clock is asserted
• Flip-flop:  state changes only on a clock edge

(edge-triggered methodology)
A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip-flops
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• The set-reset latch
– output depends on present inputs 
– If present inputs are 00, then it depends on the past inputs
– What happens if R=1, S=1?

An unclocked state element
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• Two inputs:
– the data value to be stored (D)
– the clock signal (C) indicating when to read & store D

• Two outputs:
– the value of the internal state (Q) and its complement
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D flip-flop

• Output changes only on the clock edge
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Our Implementation

• An edge triggered methodology
• Typical execution:

– read contents of some state elements, 
– send values through some combinational logic
– write results to one or more state elements

Clock cycle
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• Built using D flip-flops
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Data Path Composition

Data paths for inst classes

1. Arithmetic-logic

2. Memory references

3. Branch and Jump

Data path stages

• Instruction fetch

• Read operands

• ALU operation

• Memory access

• Register write

• PC Update
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Instruction Fetch

• PC determines the next instruction to fetch (and to 
execute)

• Branch and jump changes PC
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Datapath for R-type Instructions

1. Instruction fetch
2. Read registers: for the 

two source operands

3. ALU: perform the 
arithmetic-logic operation

4. Write register: to the 
destination register
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Datapath for Memory Reference Instructions

1. Instruction fetch
2. Read registers: base 

address and data (for load) 

3. ALU: calculating effective 
address

4. Memory access: read/write 
data
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Datapath for Branch Instructions

1. Instruction fetch
2. Read registers: two 

operands in beq

3. ALU: compare two 
operands

4. Update PC
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A Complete Datapath for Core Instructions

• Supports Lw, Sw, Add, Sub, And, Or, Slt, and Beq
• All control lines identified
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What Else is Needed in Datapath

• Support for j and jr
– For both of them PC value need to come from somewhere else
– For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR 

(27:2) and 2 bits are zero (1:0)
– For JR, PC value comes from a register

• Support for JAL
– Address is same as for J inst
– OLD PC needs to be saved in register 31

• And what about immediate operand instructions
– Second operand from instruction, but without shifting

• Support for other instructions like lw and immediate inst write
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• Execute every instruction in one cycle
– Simple implementation with simple control

• We wait for everything to settle down, and the right thing to 
be done
– ALU might not produce “right answer” right away
– We use write signals along with clock to determine when to write
– No single element can be used twice

• Cycle time determined by length of the longest path

Single-cycle Implementation

We will study more clever implementation
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Adding Control to Datapath
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Main Control Descriptions

•
Reg data← data memoryReg data ← main ALU 

output
MemtoReg

Enable data memory writeMemWrite

Enable data memory readMemRead

PC ← address ALU outputPC ← PC+4PCSrc
(Branch)

2nd ALU input ← I-field2nd ALU input ← $rtALUSrc

Write registerRegWirte

Dest reg number ← $rdDest reg number ← $rtRegDst
When assertedWhen deassertedSignal name

Q: What determines the values of those signals?


