Datapath & Control Design

+ We will design a simplified MIPS processor

* The instructions supported are
— memory-reference instructions: 1w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beq, j

* Generic Implementation:

— use the program counter (PC) to supply instruction address
— get the instruction from memory

— read registers

— use the instruction to decide exactly what to do

» Allinstructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

What blocks we need

+ We need an ALU
— We have already designed that
*+ We need memory to store inst and data
— Instruction memory takes address and supplies inst
— Data memory takes address and supply data for Iw
— Data memory takes address and data and write into memory
* We need to manage a PC and its update mechanism
* We need a register file to include 32 registers
— We read two operands and write a result back in register file
+ Some times part of the operand comes from instruction
+ We may add support of immediate class of instructions
+ We may add support for J, JR, JAL

Simple Implementation

* Include the functional units we need for each instruction

Instruction
! adoress
‘ MemWrite
Instruction = S
Instruction | Address Read|
menory data
Write Data
data memory
a. Instruction memory b. Program counter c. Adder
5 ALU contral VemRend
Read ViemR~ead
v jster 1
regster Read
Register] 5| Read detat[" a. Data memory unit b. Sign-extension unit
numbers ™| register 2
Registers Data
S| Wite
register Read| Why do we need this stuff?
. data 2
- {_. e
RegWite
a. Regsters b.ALU

More Implementation Details

* Abstract / Simplified View:

+ Two types of functional units:
— elements that operate on data values (combinational)

Example:

ALU

| Data
—>| Register #
PC Address Instruction =4 Registers AL Address
Instruction —>| Register #
memory bote
—>| Register # memory
Data

— elements that contain state (sequential)

Examples: Program and Data memory, Register File

Managing State Elements

Unclocked vs. Clocked

» Clocks used in synchronous logic

falling edge

cycle time

rising edge

— when should an element that contains state be updated?

Building the Datapath

Use multiplexors to stitch them together

Add

PCSr

Registers
Read Readt 1
ea register
Read
address Read data 1
register 2
Instruction
Write Read
register data 2
Instruction Wit
rite
memory = ot

Add_Al

result
»

3 ALU operation

Reg\/vmd
16 Sign
extend

p=> Address

xCcZ

| MemWrite

Read
ata

Data
Write memory

data

MemRead|

MemtoReg

xcZ

Latches and Flip-flops

* Output is equal to the stored value inside the
element
(don't need to ask for permission to look at the
value)
— "logically true” could mean electrically low
+ Change of state (value) is based on the clock

+ Latches: whenever the inputs change, and the
clock is asserted
* Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

An unclocked state element

* The set-reset latch
— output depends on present inputs
— If present inputs are 00, then it depends on the past inputs
— What happens if R=1, S=1?

]

D-latch

* Two inputs:

— the data value to be stored (D)

— the clock signal (C) indicating when to read & store D
* Two outputs:

— the value of the internal state (Q) and its complement

ﬁ% N L

D flip-flop

* Output changes only on the clock edge

C— >0
c 1 [
P N

10

Our Implementation

* An edge triggered methodology

* Typical execution:
— read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements

State m State
C [

element

element logic
Clock cycle _,—\—’_

11

Register File

* Built using D flip-flops

Read register —
number 1
Register 0
Register 1 M)
- U > Read data 1 Write
Register n — X 5 'D_ c
Register n Register 0
/ 1 D
Read register
number 2 EN . ntot |)
Register number ™ decoder | + Register 1
L 5
- n-1
'——| u > Read data 2 n
x
., 1O¢
I Registern - 1
D
e
Read register Register n
—
number 1 Read i o
} gReadl Register data
Read register
number 2
Wit Register file
rite
| register
Read
—
Write data 2
| data ite

T

12

Data Path Composition

Data paths for inst classes Data path stages

1. Arithmetic-logic Instruction fetch
2. Memory references * Read operands
3. Branch and Jump * ALU operation

* Memory access

* Register write

* PC Update

13

Instruction Fetch

* PC determines the next instruction to fetch (and to
execute)

* Branch and jump changes PC

14

Datapath for R-type Instructions

1. Instructio
2. Read regi

n fetch
sters: for the

two source operands

Instruction

Read
register 1

Read

register 2
Registers

Write

register

Write
data

Read
data 1

Read
data 2

. ALU: perform the

arithmetic-logic operation

. Write register: to the

destination register

result

15

Datapath for Memory Reference Instructions

1. Instruction fetch

2. Read registers: base
address and data (for load)

Instruction

Read

register 1 Read

Read data 1

register 2
Registers
Write 9

register Read

Write data 2

data

. ALU: calculating effective

address

. Memory access: read/write

data

. Write register (for store)

Read
data

Address

Data

) memory
Write

16 _
\ Sign

N 7| extend

data

16

Datapath for Branch Instructions

1. Instruction fetch 3. ALU: compare two
2. Read registers: two operands
operands in beq 4. Update PC

PC + 4 from instruction datapath =—»{

I . ALU operation
» Read .
Instruction register 1 Read
- 1 Read data 1
|

Add Sum ==+ Branch target

register 2

Registers ALU Zero|— 10 branch.
Write control logic
register Read
Write data 2
data

RegWritd]

16

. 32
A Sign
extend

17

A Complete Datapath for Core Instructions

* Supports Lw, Sw, Add, Sub, And, Or, Sit, and Beq
* All control lines identified

) 1
B

RegWite
\
Instruction [25-21] Read
Read register 1 Read|
"H" address Instruction [20-16] Read ddtal MermtoReg
Instruction register 2
Read
31-0] L',1w Wite deia
. jister
Instruction nstuction (15111 %[|were
memory Pr— 0 > data %gs[g’s
RegDstf
Instruction [15-0] 16 [sign |32
extend
Instruction [5-0]

18

What Else is Needed in Datapath

* Support forjand jr
— For both of them PC value need to come from somewhere else

— For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR
(27:2) and 2 bits are zero (1:0)

— For JR, PC value comes from a register
* Support for JAL
— Address is same as for J inst
— OLD PC needs to be saved in register 31
* And what about immediate operand instructions
— Second operand from instruction, but without shifting

» Support for other instructions like Iw and immediate inst write

19

Single-cycle Implementation

+ Execute every instruction in one cycle
— Simple implementation with simple control
+ We wait for everything to settle down, and the right thing to
be done
— ALU might not produce “right answer” right away
— We use write signals along with clock to determine when to write
— No single element can be used twice

+ Cycle time determined by length of the longest path

State ﬁ State
element c logic element
: \—/ 2

Clock cycle _,—\—,_

We will study more clever implementation

20

Adding Control to Datapath

nstruction [25-21]

nstruction [20- 16]

M

Instruction (15111 | X

nstruction [15-0]

Memto- | Reg | Mem | Mem
Instruction | RegDst | ALUSrc| Req | Write | Read | Write | Branch | ALUOp1 | ALUp0
R-format 1 0 0 1 0 0 0 1 0
1w 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

21

Main Control Descriptions

Signal name | When deasserted When asserted

RegDst Dest reg number « $rt Dest reg number « $rd
RegWirte Write register

ALUSrc 2nd ALU input « $rt 2nd ALU input < I-field
PCSrc PC « PC+4 PC « address ALU output
(Branch)

MemRead Enable data memory read
MemWrite Enable data memory write
MemtoReg | Reg data < main ALU Reg data< data memory

. output

Q: What determines the values of those signals?

22

