
1

• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:
– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

Datapath & Control Design

2

• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

What blocks we need

3

Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

ALUcontrol

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

4

• Abstract / Simplified View:

• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU

– elements that contain state (sequential)
• Examples: Program and Data memory, Register File

More Implementation Details

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

5

• Unclocked vs. Clocked
• Clocks used in synchronous logic

– when should an element that contains state be updated?

cycle time
rising edge

falling edge

Managing State Elements

6

Building the Datapath

• Use multiplexors to stitch them together

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

7

• Output is equal to the stored value inside the
element

(don't need to ask for permission to look at the
value)
– "logically true” could mean electrically low

• Change of state (value) is based on the clock
• Latches: whenever the inputs change, and the

clock is asserted
• Flip-flop: state changes only on a clock edge

(edge-triggered methodology)
A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip-flops

8

• The set-reset latch
– output depends on present inputs
– If present inputs are 00, then it depends on the past inputs
– What happens if R=1, S=1?

An unclocked state element

9

• Two inputs:
– the data value to be stored (D)
– the clock signal (C) indicating when to read & store D

• Two outputs:
– the value of the internal state (Q) and its complement

D-latch

Q

C

D

_
Q

D

C

Q

10

D flip-flop

• Output changes only on the clock edge

QQ

_
Q

Q

_
Q

D
latch

D

C

D
latch

DD

C

C

D

C

Q

11

Our Implementation

• An edge triggered methodology
• Typical execution:

– read contents of some state elements,
– send values through some combinational logic
– write results to one or more state elements

Clock cycle

State
element

1
Combinational logic

State
element

2

12

• Built using D flip-flops

Register File

M
u
x

Register 0
Register 1

Register n – 1
Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

n-to-1
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n – 1
n

13

Data Path Composition

Data paths for inst classes

1. Arithmetic-logic

2. Memory references

3. Branch and Jump

Data path stages

• Instruction fetch

• Read operands

• ALU operation

• Memory access

• Register write

• PC Update

14

Instruction Fetch

• PC determines the next instruction to fetch (and to
execute)

• Branch and jump changes PC

P C

In s tru c tio n
m e m o ry

R e a d
a d d re s s

In s t ru c t io n

4

A d d

15

Datapath for R-type Instructions

1. Instruction fetch
2. Read registers: for the

two source operands

3. ALU: perform the
arithmetic-logic operation

4. Write register: to the
destination register

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU
Zero

RegWrite

ALU operation3

16

Datapath for Memory Reference Instructions

1. Instruction fetch
2. Read registers: base

address and data (for load)

3. ALU: calculating effective
address

4. Memory access: read/write
data

5. Write register (for store)

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

17

Datapath for Branch Instructions

1. Instruction fetch
2. Read registers: two

operands in beq

3. ALU: compare two
operands

4. Update PC

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

18

A Complete Datapath for Core Instructions

• Supports Lw, Sw, Add, Sub, And, Or, Slt, and Beq
• All control lines identified

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

19

What Else is Needed in Datapath

• Support for j and jr
– For both of them PC value need to come from somewhere else
– For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR

(27:2) and 2 bits are zero (1:0)
– For JR, PC value comes from a register

• Support for JAL
– Address is same as for J inst
– OLD PC needs to be saved in register 31

• And what about immediate operand instructions
– Second operand from instruction, but without shifting

• Support for other instructions like lw and immediate inst write

20

• Execute every instruction in one cycle
– Simple implementation with simple control

• We wait for everything to settle down, and the right thing to
be done
– ALU might not produce “right answer” right away
– We use write signals along with clock to determine when to write
– No single element can be used twice

• Cycle time determined by length of the longest path

Single-cycle Implementation

We will study more clever implementation

Clock cycle

State
element

1
Combinational logic

State
element

2

21

Adding Control to Datapath

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

22

Main Control Descriptions

•
Reg data← data memoryReg data ← main ALU

output
MemtoReg

Enable data memory writeMemWrite

Enable data memory readMemRead

PC ← address ALU outputPC ← PC+4PCSrc
(Branch)

2nd ALU input ← I-field2nd ALU input ← $rtALUSrc

Write registerRegWirte

Dest reg number ← $rdDest reg number ← $rtRegDst
When assertedWhen deassertedSignal name

Q: What determines the values of those signals?

