Datapath & Control Design

+  We will design a simplified MIPS processor

* The instructions supported are
— memory-reference instructions: 1w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beq, j

* Generic Implementation:

— use the program counter (PC) to supply instruction address
— get the instruction from memory

— read registers

— use the instruction to decide exactly what to do

» Allinstructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

What blocks we need

+ We need an ALU
— We have already designed that
*+ We need memory to store inst and data
— Instruction memory takes address and supplies inst
— Data memory takes address and supply data for Iw
— Data memory takes address and data and write into memory
* We need to manage a PC and its update mechanism
* We need a register file to include 32 registers
— We read two operands and write a result back in register file
+ Some times part of the operand comes from instruction
+ We may add support of immediate class of instructions
+ We may add support for J, JR, JAL




Simple Implementation

* Include the functional units we need for each instruction
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More Implementation Details

* Abstract / Simplified View:

+ Two types of functional units:
— elements that operate on data values (combinational)

Example:
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— elements that contain state (sequential)

Examples: Program and Data memory, Register File




Managing State Elements

Unclocked vs. Clocked

» Clocks used in synchronous logic

falling edge

cycle time

rising edge

— when should an element that contains state be updated?

Building the Datapath

Use multiplexors to stitch them together
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Latches and Flip-flops

* Output is equal to the stored value inside the
element
(don't need to ask for permission to look at the
value)
— "logically true” could mean electrically low
+ Change of state (value) is based on the clock

+ Latches: whenever the inputs change, and the
clock is asserted
* Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

An unclocked state element

* The set-reset latch
— output depends on present inputs
— If present inputs are 00, then it depends on the past inputs
— What happens if R=1, S=1?
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D-latch

* Two inputs:

— the data value to be stored (D)

— the clock signal (C) indicating when to read & store D
* Two outputs:

— the value of the internal state (Q) and its complement
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* Output changes only on the clock edge
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Our Implementation

* An edge triggered methodology

* Typical execution:
— read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements
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Register File

* Built using D flip-flops
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Data Path Composition

Data paths for inst classes Data path stages

1. Arithmetic-logic Instruction fetch
2. Memory references * Read operands
3. Branch and Jump * ALU operation

* Memory access

* Register write

*  PC Update
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Instruction Fetch

* PC determines the next instruction to fetch (and to
execute)

* Branch and jump changes PC
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Datapath for R-type Instructions
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Datapath for Memory Reference Instructions

1. Instruction fetch

2. Read registers: base
address and data (for load)
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Datapath for Branch Instructions

1. Instruction fetch 3. ALU: compare two
2. Read registers: two operands
operands in beq 4. Update PC
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A Complete Datapath for Core Instructions

* Supports Lw, Sw, Add, Sub, And, Or, Sit, and Beq
* All control lines identified
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What Else is Needed in Datapath

* Support forjand jr
— For both of them PC value need to come from somewhere else

— For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR
(27:2) and 2 bits are zero (1:0)

— For JR, PC value comes from a register
* Support for JAL
— Address is same as for J inst
— OLD PC needs to be saved in register 31
* And what about immediate operand instructions
— Second operand from instruction, but without shifting

» Support for other instructions like Iw and immediate inst write
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Single-cycle Implementation

+ Execute every instruction in one cycle
— Simple implementation with simple control
+  We wait for everything to settle down, and the right thing to
be done
— ALU might not produce “right answer” right away
— We use write signals along with clock to determine when to write
— No single element can be used twice

+ Cycle time determined by length of the longest path
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We will study more clever implementation
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Adding Control to Datapath

nstruction [25-21]

nstruction [20- 16]

M

Instruction (15111 | X

nstruction [15-0]

Memto- | Reg | Mem | Mem
Instruction | RegDst | ALUSrc| Req | Write | Read | Write | Branch | ALUOp1 | ALUp0
R-format 1 0 0 1 0 0 0 1 0
1w 0 1 1 1 1 0 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
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Main Control Descriptions

Signal name | When deasserted When asserted

RegDst Dest reg number « $rt Dest reg number « $rd
RegWirte Write register

ALUSrc 2nd ALU input « $rt 2nd ALU input < I-field
PCSrc PC « PC+4 PC « address ALU output
(Branch)

MemRead Enable data memory read
MemWrite Enable data memory write
MemtoReg | Reg data < main ALU Reg data< data memory

. output

Q: What determines the values of those signals?
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