Booth’s algorithm (Neg. multiplier)

Itera- multi- Booth’s algorithm
tion plicand Step Product
0 0010 Initial values 00001101 0
0010 lc: 10= prod = Prod - Mcand 1110 11010
' 0010 2: Shift right Product 111101101
2 0010 1b: 01= prod = Prod + Mcand 00010110 1
0010 2: Shift right Product 0000 1011 0
3 0010 lc: 10= prod = Prod - Mcand 1110 1011 0
0010 2: Shift right Product 111101011
4 0010 1d: 11 = no operation 111101011
0010 2: Shift right Product 11111010 1

Carry-Save Addition

« Consider adding six set of numbers (4 bits each in the example)
« The numbers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
+ One way is to add them pair wise, getting three results, and then
adding them again
1001 1111 1010 01111 100101

0110 01 110 10@%10000

01111 10110 — 10000 = 100101 110101

« Other method is add them three at a time by saving carry

1001 0111 00000 10101 001101

0110 101 11110 010100 101000

1111 1 001100 110101
—g0000 " pA0TT~ 070107/ s0T07/ /_sum

11110 01100 101000 © ——CARRY

Carry-Save Addition for Multiplication

« n-bit carry-save adder take 1FA time for any n

« For n x n bit multiplication, n or n/2 (for 2 bit at time Booth’s
encoding) partial products can be generated

+ For n partial products n/3 n-bit carry save adders can be used

+ This yields 2n/3 partial results

* Repeat this operation until only two partial results are remaining

+ Add them using an appropriate size adder to obtain 2n bit result

* For n=32, you need 30 carry save adders in eight stages taking 8T
time where T is time for one-bit full adder

* Then you need one carry-propagate or carry-look-ahead adder

Division

« Even more complicated

— can be accomplished via shifting and addition/subtraction
* More time and more area
+ We will look at 3 versions based on grade school algorithm

0011 |0010 0010 Dividend)

+ Negative numbers: Even more difficult
* There are better techniques, we won’t look at them

Division, First Version

Division, Second Version

Division, Final Version

Restoring Division

Iteration Divisor Divide algorithm

Step

Remainder

0 0010 Initial values

00000111

0010 Shift Rem left 1

0000 1110

0010 2:Rem = Rem - Div

1110 1110

0010 3b: Rem < 0 = + Div, sll R, R0 = 0

0001 1100

2 0010 2: Rem = Rem - Div

11111100

0010 3b:Rem < 0 = + Div, sll R, RO =0

0011 1000

3 0010 2:Rem = Rem - Div

0001 1000

0010 3a:Rem 20 = slIR, RO =1

00110001

2: Rem = Rem - Div

0001 0001

0010 3a:Rem 20 = slIR, RO =1

0010 0011

Done 0010 shift left half of Rem right 1

0001 0011

7
Non-Restoring Division
Iteration Divisor Divide algorithm
Step Remainds
0 0010 Initial values 0000 1110
0010 1: Rem = Rem - Div 1110 1110
1 0010 2b: Rem < 0 =>sll R, RO =0 1101 1100
0010 3b: Rem = Rem + Div 1111 1100
2 0010 2b: Rem <0 = sl R, RO =0 1111 1000
0010 3b: Rem = Rem + Div 0001 1000
3 0010 2a:Rem>0=sllR,RO=1 0011 0001
0010 3a: Rem = Rem - Div 0001 0001
4 0010 2a: Rem>0=sllR,RO=1 00100011
Done 0010 shift left half of Rem right 1 0001 0011
9

Floating Point (a brief look)

* We need a way to represent
— numbers with fractions, e.g., 3.1416
— very small numbers, e.g., .000000001
- very large numbers, e.g., 3.15576 x 10°
* Representation:

— sign, exponent, significand: (-1)5i9" x significand x 2exponent

— more bits for si gives more y
— more bits for exponent increases range

« |EEE 754 floating point standard:
— single precision: 8 bit exp 23 bit si
— double precision: 11 bit 52 bit si

10

IEEE 754 floating-point standard

« Leading “1” bit of significand is implicit

+ Exponent is “biased” to make sorting easier
— all 0s is smallest exponent all 1s is largest
— bias of 127 for single precision and 1023 for double precision
- y: (~1)59" x (1+signifi x 2 bias

« Example:
- decimal: -.75 = -3/4 = -3/2?
— binary: -11=-1.1x2"
— floating point: exponent = 126 = 01111110

— |EEE single precision: 10111111010000000000000000000000

Floating Point Complexities

* Operations are somewhat more complicated (see text)
+ In addition to overflow we can have “underflow”
« Accuracy can be a big problem

— IEEE 754 keeps two extra bits, guard and round

four rounding modes
— positive divided by zero yields “infinity”

— zero divide by zero yields “not a number”
— other complexities
« Implementing the standard can be tricky
* Not using the standard can be even worse
— see text for description of 80x86 and Pentium bug!

12

Floating Point Add/Sub

* To add/sub two numbers
— We first compare the two exponents
— Select the higher of the two as the exponent of result

— Select the significand part of lower exponent number and shift it right by
the amount equal to the difference of two exponent

— Remember to keep two shifted out bit and a guard bit

- the signi as required ing to
operands

p ion and signs of

— Normalize significand of result adjusting exponent

— Round the result (add one to the least significant bit to be retained if the
first bit being thrown away is a 1

Re-normalize the result

Hardware Organization for Floating Point Add

[oen] mepomses] mgntonnd | | | maponenr| sigenna |

Comnpare
xporanis

Narmaliss

14

Flow Diagram for Floating-point Multiply

16

13
Floating Point Multiply
+ To multiply two numbers
— Add the two exponent (remember access 127 notation)
— Produce the result sign as exor of two signs
— Multiple significand portions
— Results will be 1x.xxxxx... or 01.xxxx....
— In the first case shift result right and adjust exponent
— Round off the result
— This may require another normalization step
15
Floating Point Divide
« To divide two numbers
— Subtract divisor’s exponent from the dividend’s exponent
(remember access 127 notation)
— Produce the result sign as exor of two signs
— Divide dividend’s significand by divisor’s significand portions
— Results will be 1.xxxxx... or 0.1xxxx....
— In the second case shift result left and adjust exponent
— Round off the result
— This may require another normalization step
17

Summary on Chapter 4

+ Computer arithmetic is constrained by limited precision
« Bit patterns have no inherent meaning but standards do exist
— two’s complement
— IEEE 754 floating point
« Computer instructions determine “meaning” of the bit patterns
« Performance and accuracy are important so there are many
plexities in real hii (i.e., algorithms and implementation)
* We designed an ALU to carry out four function
+ Multiplication: Unsigned, Signed, Signed using Booth’s encoding,
and Carry save adders and their use
« Division

« Floating Point representation
— Guard and Sticky bit concepts
— Chopping vs Truncation vs. Rounding in floating point numbers

18

