Booth's algorithm (Neg. multiplier)

Itera-	multi-	Booth's algorithm	
tion	plicand	Step	Product
0	0010	Initial values	0000 1101 0
1	0010	1c: $10 \Rightarrow \text{prod} = \text{Prod} - \text{Mcand}$	1110 1101 0
	0010	2: Shift right Product	1111 0110 1
2	0010	1b: $01 \Rightarrow \text{prod} = \text{Prod} + \text{Mcand}$	0001 0110 1
	0010	2: Shift right Product	0000 1011 0
3	0010	1c: 10⇒ prod = Prod - Meand	1110 1011 0
	0010	2: Shift right Product	1111 0101 1
4	0010	1d: 11 ⇒ no operation	1111 0101 1
	0010	2: Shift right Product	1111 1010 1

Carry-Save Addition

- · Consider adding six set of numbers (4 bits each in the example)
- The numbers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
- One way is to add them pair wise, getting three results, and then adding them again

· Other method is add them three at a time by saving carry

				, ,
1001	0111	,00000	010101	,001101
0110	1010	_11110	010100	101000
1111	0110	, 01011 ,	/_/.001100	<u> 110101</u>
00000	01011	010101	/ 001101 /	SUM
11110 /		010100 /	101000 ′	.—CARRY

2

Carry-Save Addition for Multiplication

- · n-bit carry-save adder take 1FA time for any n
- For n x n bit multiplication, n or n/2 (for 2 bit at time Booth's encoding) partial products can be generated
- For n partial products n/3 n-bit carry save adders can be used
- · This yields 2n/3 partial results
- Repeat this operation until only two partial results are remaining
- Add them using an appropriate size adder to obtain 2n bit result
- For n=32, you need 30 carry save adders in eight stages taking 8T time where T is time for one-bit full adder
- · Then you need one carry-propagate or carry-look-ahead adder

Division

- · Even more complicated
 - can be accomplished via shifting and addition/subtraction
- · More time and more area
- · We will look at 3 versions based on grade school algorithm

- · Negative numbers: Even more difficult
- · There are better techniques, we won't look at them

Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	0000 0111
	0010	Shift Rem left 1	0000 1110
	0010	2: Rem = Rem - Div	1110 1110
1	0010	3b: Rem $< 0 \Rightarrow + Div$, sll R, R0 = 0	0001 1100
2	0010	2: Rem = Rem - Div	1111 1100
	0010	3b: Rem $< 0 \Rightarrow$ + Div, sll R, R0 = 0	0011 1000
3	0010	2: Rem = Rem - Div	0001 1000
	0010	3a: Rem ≥ 0 ⇒ sll R, R0 = 1	0011 0001
4	0010	2: Rem = Rem - Div	0001 0001
	0010	3a: Rem ≥ 0 ⇒ sll R, R0 = 1	0010 0011
Done	0010	shift left half of Rem right 1	0001 0011

Non-Restoring Division

	Iteration	Divisor	Divide algorithm	
			Step	Remainder
	0	0010	Initial values	0000 1110
		0010	1: Rem = Rem - Div	1110 1110
	1	0010	2b: Rem $< 0 \Rightarrow$,sll R, R0 = 0	1101 1100
		0010	3b: Rem = Rem + Div	1111 1100
	2	0010	2b: Rem $< 0 \Rightarrow$ sll R, R0 = 0	1111 1000
		0010	3b: Rem = Rem + Div	0001 1000
	3	0010	2a: Rem $> 0 \Rightarrow$ sll R, R0 = 1	0011 0001
		0010	3a: Rem = Rem - Div	0001 0001
	4	0010	2a: Rem $> 0 \Rightarrow$ sll R, R0 = 1	0010 0011
	Done	0010	shift left half of Rem right 1	0001 0011

9

IEEE 754 floating-point standard

- · Leading "1" bit of significand is implicit
- · Exponent is "biased" to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: (-1)^{sign} × (1+significand) × 2^{exponent bias}
- Example:
 - decimal: $-.75 = -3/4 = -3/2^2$
 - binary: -.11 = -1.1 x 2⁻¹
 - floating point: exponent = 126 = 01111110

Floating Point (a brief look)

- · We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576 x 10⁹
- Representation:
 - sign, exponent, significand: (-1)sign x significand x 2exponent
 - more bits for significand gives more accuracy
 - more bits for exponent increases range
- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand

10

Floating Point Complexities

- · Operations are somewhat more complicated (see text)
- · In addition to overflow we can have "underflow"
- · Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!

11

Floating Point Add/Sub

- To add/sub two numbers
 - We first compare the two exponents
 - Select the higher of the two as the exponent of result
 - Select the significand part of lower exponent number and shift it right by the amount equal to the difference of two exponent
 - Remember to keep two shifted out bit and a guard bit
 - add/sub the signifand as required according to operation and signs of operands
 - Normalize significand of result adjusting exponent
 - Round the result (add one to the least significant bit to be retained if the first bit being thrown away is a 1
 - Re-normalize the result

13

Floating Point Multiply

- · To multiply two numbers
 - Add the two exponent (remember access 127 notation)
 - Produce the result sign as exor of two signs
 - Multiple significand portions
 - Results will be 1x.xxxxx... or 01.xxxx....
 - In the first case shift result right and adjust exponent
 - Round off the result
 - This may require another normalization step

Floating Point Divide

- · To divide two numbers
 - Subtract divisor's exponent from the dividend's exponent (remember access 127 notation)
 - Produce the result sign as exor of two signs
 - Divide dividend's significand by divisor's significand portions
 - Results will be 1.xxxxx... or 0.1xxxx....
 - In the second case shift result left and adjust exponent
 - Round off the result
 - This may require another normalization step

17

Summary on Chapter 4

- · Computer arithmetic is constrained by limited precision
- · Bit patterns have no inherent meaning but standards do exist
 - two's complement
 - IEEE 754 floating point
- · Computer instructions determine "meaning" of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation)
- · We designed an ALU to carry out four function
- Multiplication: Unsigned, Signed, Signed using Booth's encoding, and Carry save adders and their use
- Division
- · Floating Point representation
 - Guard and Sticky bit concepts
 - Chopping vs Truncation vs. Rounding in floating point numbers