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Booth’s algorithm (Neg. multiplier) 

Booth’s algorithmItera-
tion

multi-
plicand Step Product

0 0010 Initial values 0000 1101 0

0010 1c: 10⇒ prod = Prod - Mcand 1110 1101 0
1

0010 2: Shift right Product 1111 0110 1

0010 1b: 01⇒ prod = Prod + Mcand 0001 0110 12

0010 2: Shift right Product 0000 1011 0

0010 1c: 10⇒ prod = Prod - Mcand 1110 1011 03

0010 2: Shift right Product 1111 0101 1

0010 1d: 11 ⇒ no operation 1111 0101 14

0010 2: Shift right Product 1111 1010 1
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• Consider adding six set of numbers (4 bits each in the example)
• The numbers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
• One way is to add them pair wise, getting three results, and then 

adding them again
 1001          1111        1010        01111        100101
 0110          0111        0110        10110          10000
 01111        10110      10000      100101        110101

• Other method is add them three at a time by saving carry
 1001           0111        00000          010101             001101                 
 0110           1010        11110          010100             101000
 1111           0110        01011          001100             110101
 00000        01011      010101          001101             SUM
 11110        01100      010100          101000             CARRY

Carry-Save Addition
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• n-bit carry-save adder take 1FA time for any n
• For n x n bit multiplication, n or n/2 (for 2 bit at time Booth’s 

encoding) partial products can be generated 
• For n partial products n/3 n-bit carry save adders can be used 
• This yields 2n/3 partial results
• Repeat this operation until only two partial results are remaining
• Add them using an appropriate size adder to obtain 2n bit result
• For n=32, you need 30 carry save adders in eight stages taking 8T 

time where T is time for one-bit full adder
• Then you need one carry-propagate or carry-look-ahead adder

Carry-Save Addition for Multiplication
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• Even more complicated
– can be accomplished via shifting and addition/subtraction

• More time and more area
• We will look at 3 versions based on grade school algorithm

0011 | 0010 0010 (Dividend)

• Negative numbers:  Even more difficult
• There are better techniques, we won’t look at them

Division
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Division, First Version
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Division, Second Version
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Division, Final Version
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Restoring Division

D ivide algorithmIteration D ivisor
Step R em ainder

0010 Initial values 0000 01110
0010 Shift R em  left 1 0000 1110
0010 2: R em  = R em  - D iv 1110 1110

1 0010 3b: R em  <  0 ⇒  +  D iv, sll R , R 0 = 0 0001 1100

0010 2: R em  = R em  - D iv 1111 11002

0010 3b: R em  <  0 ⇒  +  D iv, sll R , R 0 = 0 0011 1000

0010 2: R em  = R em  - D iv 0001 10003

0010 3a: R em  ≥  0  ⇒  sll R , R 0 = 1 0011 0001

0010 2: R em  = R em  - D iv 0001 00014

0010 3a: R em  ≥  0  ⇒  sll R , R 0 = 1 0010 0011

D one 0010 shift left half of R em  right 1 0001 0011
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Non-Restoring Division
Divide algorithmIteration Divisor

Step Remainder
0 0010 Initial values 0000 1110

0010 1: Rem = Rem - Div 1110 1110

0010 2b: Rem < 0 ⇒,sll R, R0 = 0 1101 11001

0010 3b: Rem = Rem + Div 1111 1100
0010 2b: Rem < 0 ⇒ sll R, R0 = 0 1111 10002

0010 3b: Rem = Rem + Div 0001 1000

0010 2a: Rem > 0 ⇒ sll R, R0 = 1 0011 00013

0010 3a: Rem = Rem - Div 0001 0001

4 0010 2a: Rem > 0 ⇒ sll R, R0 = 1 0010 0011

Done 0010 shift left half of Rem right 1 0001 0011
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Floating Point  (a brief look)

• We need a way to represent
– numbers with fractions, e.g., 3.1416
– very small numbers, e.g., .000000001
– very large numbers, e.g., 3.15576 × 109

• Representation:
– sign, exponent, significand:    (–1)sign ×  significand ×  2exponent  

– more bits for significand gives more accuracy
– more bits for exponent increases range

• IEEE 754 floating point standard:  
– single precision:  8 bit exponent, 23 bit significand
– double precision:  11 bit exponent, 52 bit significand
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IEEE 754 floating-point standard

• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary:   (–1)sign × (1+significand) ×  2exponent – bias

• Example:

– decimal:  -.75 = -3/4 = -3/22

– binary:  -.11 = -1.1 x 2-1

– floating point:  exponent = 126 = 01111110

– IEEE single precision:  10111111010000000000000000000000
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Floating Point Complexities

• Operations are somewhat more complicated (see text)
• In addition to overflow we can have “underflow”
• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round
– four rounding modes
– positive divided by zero yields “infinity”
– zero divide by zero yields “not a number”
– other complexities

• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!
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Floating Point  Add/Sub

• To add/sub two numbers 
– We first compare the two exponents
– Select the higher of the two as the exponent of result
– Select the significand part of lower exponent number and shift it right by 

the amount equal to the difference of two exponent
– Remember to keep two shifted out bit and a guard bit
– add/sub the signifand as required according to operation and signs of 

operands
– Normalize significand of result adjusting exponent
– Round the result (add one to the least significant bit to be retained if the 

first bit being thrown away is a 1
– Re-normalize the result
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Hardware Organization for Floating Point Add
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Floating Point  Multiply

• To multiply two numbers 
– Add the two exponent (remember access 127 notation)
– Produce the result sign as exor of two signs
– Multiple significand portions
– Results will be 1x.xxxxx… or 01.xxxx….
– In the first case shift result right and adjust exponent
– Round off the result
– This may require another normalization step
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Flow Diagram for Floating-point Multiply
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Floating Point  Divide

• To divide two numbers 
– Subtract divisor’s exponent from the dividend’s exponent 

(remember access 127 notation)
– Produce the result sign as exor of two signs
– Divide dividend’s significand by divisor’s significand portions
– Results will be 1.xxxxx… or 0.1xxxx….
– In the second case shift result left and adjust exponent
– Round off the result
– This may require another normalization step
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• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do exist

– two’s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of  the bit patterns
• Performance and accuracy are important so there are many 

complexities in real machines (i.e., algorithms and implementation)
• We designed an ALU to carry out four function
• Multiplication: Unsigned, Signed, Signed using Booth’s encoding, 

and Carry save adders and their use
• Division
• Floating Point representation

– Guard and Sticky bit concepts
– Chopping vs Truncation vs. Rounding in floating point numbers

Summary on Chapter 4


