An ALU (arithmetic logic unit)

* Let's build an ALU to support the andi and ori instructions
— we'll just build a 1 bit ALU, and use 32 of them

operation opja |bres

a —— result

b

« Possible Implementation (sum-of-products):

mlniie g eialnin

Review: The Multiplexor

+ Selects one of the inputs to be the output, based on a control input
S
note: we call this a 2-input mux
A, even though it has 3 inputs!

B,

+ Lets build our ALU using a MUX:

Different Implementations

+ Not easy to decide the “best” way to build something

— Don't want too many inputs to a single gate

— Don’t want to have to go through too many gates

— for our purposes, ease of comprehension is important
« Let's look at a 1-bit ALU for addition:

Garmyn

ab+ac, +bc,
a xor b xor c;,

out.
sum

camyou

+ How could we build a 1-bit ALU for add, and, and or?
« How could we build a 32-bit ALU?

Building a 32 bit ALU

camyin |

22— Tamin
Az
camyou]

| Rosutz
0

1
camyou P

31— Camyin
Rosutt
bt] ALUSY

What about subtraction (a—b) ?

+ Two's complement approach: just negate b and add.
* How do we negate?

« Avery clever solution:

Cermin |
i

camyou

Tailoring the ALU to the MIPS

* Need to support the set-on-less-than instruction (slt)
— remember: slt is an arithmetic instruction
— produces a 1 if rs < rt and 0 otherwise
— use subtraction: (a-b) <0 impliesa<b

« Need to support test for equality (beq $t5, $t6, $t7)

— use subtraction: (a-b) =0impliesa=b

Supporting slt oo |

« Can we figure out the idea?

a Garryout

Garryin
i

Overtow I
detoction bﬁ Overton

Test for equality

*Note: zero is a I when the result is zero!

Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

Conclusion

+ We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
« Important points about hardware
— all of the gates are always working
— the speed of a gate is affected by the number of inputs to the gate
— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)
* Our primary focus: comprehension, however,

— Clever changes to organization can improve performance
(similar to using better algorithms in software)
— we’ll look at two examples for addition and multiplication

A 32-bit ALU

A Ripple carry ALU
Two bits decide operation
— Add/Sub
— AND
- OR
— LESS
1 bit decide add/sub operation
A carry in bit
Bit 31 generates overflow and set bit

10

9
Problem: ripple carry adder is slow
+ Is a32-bit ALU as fast as a 1-bit ALU?
« Is there more than one way to do addition?
— two extremes: ripple carry and sum-of-products
Can you see the ripple? How could you get rid of it?
c; = by, + asc, + agb,
c, = b, + ac; +ab;, ¢, =
c; = be, + a,c, +a,b, c; =
c, = bye; + aze; +ab; ¢, =
Not feasible! Why?
11

Carry-look-ahead adder

c =

C2
C3

Cq

An approach in-between our two extremes

Motivation:
— If we didn't know the value of carry-in, what could we do?
— When would we always generate a carry?
— When would we propagate the carry?

Did we get rid of the ripple?

9; = a; b;
Py = a; + by

9o + PoCo
=g+ P& C2 = g1 + P1go * P1PoCo
=92 + P, C3 = g2 + P91 + P2P190 + P2P1PoCo
= g3 + PsC; C4 = g3 + P39, + P3P291 + PsP2P190 + P3P2P1PoCo

Feasible! Why?

12

A 4-bit carry look-ahead adder

* Generate g and p term for each bit
- + Useg’s, p’s and carry in to generate all C’s
an f=F « Also use them to generate block G and P

Use principle to build bigger adders

+ CLA principle can be used recursively

caryin
20— Garyn
=y o Res0-3
S A
=] E—n
= e
53
v

26— G|
2= Reste-7
05— muy | A 16 bit adder uses four 4-bit adders
2= piv .
Bl GG It takes block g and p terms and cin to generate
b7 —| ™ block carry bits out

a2 : " :

Block carries are used to generate bit carries
SE:: cemin Result1 — could use ripple carry of 4-bit CLA adders
= . — Better: use the CLA principle again!
s b=
5=
=11
e Rosutiz-15
513
s

Delays in carry look-ahead adders

+ 4-Bitcase
— Generation of g and p: 1 gate delay

— Generation of carries (and G and P): 2 more gate delay

— Generation of sum: 1 more gate delay
+ 16-Bit case
— Generation of g and p: 1 gate delay
— Generation of block G and P: 2 more gate delay
— Generation of block carries: 2 more gate delay
— Generation of bit carries: 2 more gate delay
— Generation of sum: 1 more gate delay
* 64-Bit case
— 12 gate delays

14
Multiplication
* More complicated than addition
— accomplished via shifting and addition
* More time and more area
« Let's look at 3 versions based on grade school algorithm
01010010 (multiplicand)
%01101101 (multiplier)

* Negative numbers: convert and multiply

« Use other better techniques like Booth’s encoding
16

Multiplication

01010010
%01101101 iplier)

01010010
x01101101
00000000

0101001

0010100

0110011

1000010

0100001

0111001

1000101
00000000

0010001011101010

01010010
00000000
01010010
01010010f
00000000
01010010

01010010

001000101

(multiplicand)

(multiplier)

x1
0
P x0

L0

PO x1

010

D00 x1
1010

p000 x0
p1010
p0000 x1
101010
000000 =x1
1101010
0000000 x0
1101010

Multiplication: Implementation

Multplero = 1 Multpterd =0

multlcand to product and
Place he resul in Prodc regster

2.Shit e Multplcand rogiserlft 1 bit
3.Shit he Multplor registr ight 1 bit

Product
wrte

bt

No: < 32 repetions

Ves: 32 ropettons

18

Second Version

Multpterd =0

18, Add mutilicand
he product and i
2bts e

Wultpler
Shit rght

Final Version

Mulipicand

1a. Add multlicand 1o the ot haf of
the procuct and place he et in
thelft ha of th Product register

2.Shithe Product regiterright 1 bit

No: <32 repatons

Ves: 32 repetions

20
Signed Multiplication
« Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
+ Let F = 0 (shift flag)
« Letresult A[n-1:0] =0....00
+ For n-1 steps do
— A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
— F<=F .or. (M[n-1] .and. Q[0]) /* determine shift bit */
— Shift Aand Qwith F, i.e.,
— A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]
+ Do the correction step
— A[n-1:0] = A[n-1:0] - M[n-1:0] x Q[0] /* subtract partial product */
— Shift A and Q while retaining A[n-1]
— This works in all cases excepts when both operands are 10..00
22

19
Multiplication Example
Itera- multi- Orignal algorithm
tion plicand Step Product
0 0010 Initial values 0000 0110
0010 1:0 = no operation 00000110
1
0010 2: Shift right Product 0000 0011
2 0010 la:1= prod = Prod + Mcand 0010 0011
0010 2: Shift right Product 0001 0001
3 0010 la:1= prod = Prod + Mcand 0011 0001
0010 2: Shift right Product 0001 1000
4 0010 1:0 = no operation 0001 1000
0010 2: Shift right Product 0000 1100 1
Booth’s Encoding
+ Numbers can be represented using three symbols, 1, 0, and -1
« Let us consider -1 in 8 bits
— One representationis 11111111
— Another possibleone 0000000 -1
« Another example +14
— One representationis 00001110
— Another possibleone 000100-10
+ We do not explicitly store the sequence
« Look for transition from previous bit to next bit
— 0to0is0;0to1is-1;1to1is0;and1to0is 1
« Multiplication by 1, 0, and -1 can be easily done
« Add all partial results to get the final answer
23

Using Booth’s Encoding for Multiplication

« Convert a binary string in Booth’s encoded string

« Multiply by two bits at a time

« For n bit by n-bit multiplication, n/2 partial product

« Partial products are signed and obtained by multiplying the
multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)

« Add partial products to obtain the final result

« Example, multiply 0111 (+7) by 1010 (-6)

+ Booths encoding of 1010 is -1 +1 -1 0

« With 2-bit groupings, multiplication needs to be carried by -1 and -2

0 (multiplication by -2)

1111001
1110010 O (multiplication by -1 and shift by 2 positions)

« Add the two partial products to get 11010110 (-42) as result

24

