
1

• Let's build an ALU to support the andi and ori instructions
– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b

a

operation

result

op a b res

An ALU (arithmetic logic unit)

2

• Selects one of the inputs to be the output, based on a control input

• Lets build our ALU using a MUX:

S

C
A
B

0

1

Review: The Multiplexor

note: we call this a 2-input mux
even though it has 3 inputs!

3

• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?
• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a cin + b cinsum = a xor b xor cinSum

CarryIn

CarryOut

a

b

4

Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

5

• Two's complement approach: just negate b and add.
• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

6

• Need to support the set-on-less-than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction: (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS

Supporting slt

• Can we figure out the idea?
0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b 2

Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow
detection Overflow

a.

b. 8

Test for equality

• Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

•Note: zero is a 1 when the result is zero!

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

9

Conclusion

• We can build an ALU to support the MIPS instruction set
– key idea: use multiplexor to select the output we want
– we can efficiently perform subtraction using two’s complement
– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working
– the speed of a gate is affected by the number of inputs to the gate
– the speed of a circuit is affected by the number of gates in series

(on the “critical path” or the “deepest level of logic”)
• Our primary focus: comprehension, however,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– we’ll look at two examples for addition and multiplication

10

• A Ripple carry ALU
• Two bits decide operation

– Add/Sub
– AND
– OR
– LESS

• 1 bit decide add/sub operation
• A carry in bit
• Bit 31 generates overflow and set bit

A 32-bit ALU

11

• Is a 32-bit ALU as fast as a 1-bit ALU?
• Is there more than one way to do addition?

– two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1 c2 =
c3 = b2c2 + a2c2 + a2b2 c3 =
c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

Problem: ripple carry adder is slow

12

• An approach in-between our two extremes
• Motivation:

– If we didn't know the value of carry-in, what could we do?
– When would we always generate a carry? gi = ai bi
– When would we propagate the carry? pi = ai + bi

• Did we get rid of the ripple?

c1 = g0 + p0c0
c2 = g1 + p1c1 c2 = g1 + p1g0 + p1p0c0
c3 = g2 + p2c2 c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0
c4 = g3 + p3c3 c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

Feasible! Why?

Carry-look-ahead adder

13

• Generate g and p term for each bit
• Use g’s, p’s and carry in to generate all C’s
• Also use them to generate block G and P
• CLA principle can be used recursively

A 4-bit carry look-ahead adder

14

• A 16 bit adder uses four 4-bit adders
• It takes block g and p terms and cin to generate

block carry bits out
• Block carries are used to generate bit carries

– could use ripple carry of 4-bit CLA adders
– Better: use the CLA principle again!

Use principle to build bigger adders
CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead unit

15

• 4-Bit case
– Generation of g and p: 1 gate delay
– Generation of carries (and G and P): 2 more gate delay
– Generation of sum: 1 more gate delay

• 16-Bit case
– Generation of g and p: 1 gate delay
– Generation of block G and P: 2 more gate delay
– Generation of block carries: 2 more gate delay
– Generation of bit carries: 2 more gate delay
– Generation of sum: 1 more gate delay

• 64-Bit case
– 12 gate delays

Delays in carry look-ahead adders

16

• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Let's look at 3 versions based on grade school algorithm

01010010 (multiplicand)
x01101101 (multiplier)

• Negative numbers: convert and multiply
• Use other better techniques like Booth’s encoding

Multiplication

17

 01010010 (multiplicand)

 x01101101 (multiplier)
00000000

 01010010 x1
 01010010
 000000000 x0
 001010010
 0101001000 x1
 0110011010
 01010010000 x1
 10000101010
 000000000000 x0
 010000101010
 0101001000000 x1
 0111001101010
 01010010000000 x1
 10001011101010
 000000000000000 x0
 0010001011101010

Multiplication

 01010010 (multiplicand)

 x01101101 (multiplier)
00000000

 01010010 x1
 01010010
 000000000 x0
 001010010
 0101001000 x1
 0110011010
 01010010000 x1
 10000101010
 000000000000 x0
 010000101010
 0101001000000 x1
 0111001101010
 01010010000000 x1
 10001011101010
 000000000000000 x0
 0010001011101010

18

Multiplication: Implementation

Done

1. Test
Multiplier0

1a. Add multiplicand to product and
place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

19

Second Version

Multiplier
Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Done

1. Test
Multiplier0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

20

Final Version

Control
testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU

Done

1. Test
Product0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

21

Multiplication Example

Orignal algorithmItera-
tion

multi-
plicand Step Product

0 0010 Initial values 0000 0110

0010 1:0 ⇒ no operation 0000 0110
1

0010 2: Shift right Product 0000 0011

0010 1a:1⇒ prod = Prod + Mcand 0010 00112

0010 2: Shift right Product 0001 0001

0010 1a:1⇒ prod = Prod + Mcand 0011 00013

0010 2: Shift right Product 0001 1000

0010 1:0 ⇒ no operation 0001 10004

0010 2: Shift right Product 0000 1100
22

• Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
• Let F = 0 (shift flag)
• Let result A[n-1:0] = 0….00
• For n-1 steps do

– A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
– F<= F .or. (M[n-1] .and. Q[0]) /* determine shift bit */
– Shift A and Q with F, i.e.,
– A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]

• Do the correction step
– A[n-1:0] = A[n-1:0] - M[n-1:0] x Q[0] /* subtract partial product */
– Shift A and Q while retaining A[n-1]
– This works in all cases excepts when both operands are 10..00

Signed Multiplication

23

• Numbers can be represented using three symbols, 1, 0, and -1
• Let us consider -1 in 8 bits

– One representation is 1 1 1 1 1 1 1 1
– Another possible one 0 0 0 0 0 0 0 -1

• Another example +14
– One representation is 0 0 0 0 1 1 1 0
– Another possible one 0 0 0 1 0 0 -1 0

• We do not explicitly store the sequence
• Look for transition from previous bit to next bit

– 0 to 0 is 0; 0 to 1 is -1; 1 to 1 is 0; and 1 to 0 is 1
• Multiplication by 1, 0, and -1 can be easily done
• Add all partial results to get the final answer

Booth’s Encoding

24

• Convert a binary string in Booth’s encoded string
• Multiply by two bits at a time
• For n bit by n-bit multiplication, n/2 partial product
• Partial products are signed and obtained by multiplying the

multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)
• Add partial products to obtain the final result
• Example, multiply 0111 (+7) by 1010 (-6)
• Booths encoding of 1010 is -1 +1 -1 0
• With 2-bit groupings, multiplication needs to be carried by -1 and -2
•

1 1 1 1 0 0 1 0 (multiplication by -2)
1 1 1 0 0 1 0 0 (multiplication by -1 and shift by 2 positions)

• Add the two partial products to get 11010110 (-42) as result

Using Booth’s Encoding for Multiplication

