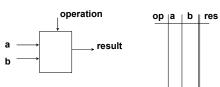
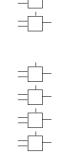
An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
 - we'll just build a 1 bit ALU, and use 32 of them



· Possible Implementation (sum-of-products):



Review: The Multiplexor

· Selects one of the inputs to be the output, based on a control input

note: we call this a 2-input mux even though it has 3 inputs!

· Lets build our ALU using a MUX:

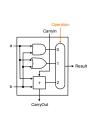
2

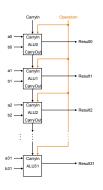
Different Implementations

- · Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Don't want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- · Let's look at a 1-bit ALU for addition:

- · How could we build a 1-bit ALU for add, and, and or?
- · How could we build a 32-bit ALU?

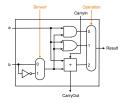
Building a 32 bit ALU





What about subtraction (a - b)?

- · Two's complement approach: just negate b and add.
- · How do we negate?
- · A very clever solution:



5

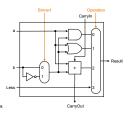
Tailoring the ALU to the MIPS

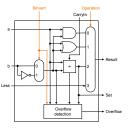
- · Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise
 - use subtraction: (a-b) < 0 implies a < b
- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - use subtraction: (a-b) = 0 implies a = b

6

Supporting slt

· Can we figure out the idea?





Test for equality

· Notice control lines:

000 = and

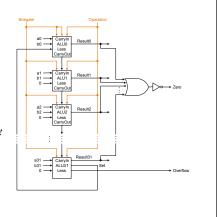
001 = or

010 = add

110 = subtract

111 = slt

•Note: zero is a 1 when the result is zero!



Conclusion

- · We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two's complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU
- · Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series (on the "critical path" or the "deepest level of logic")
- · Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance (similar to using better algorithms in software)
 - we'll look at two examples for addition and multiplication

9

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- · Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products

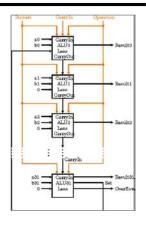
Can you see the ripple? How could you get rid of it?

$$\begin{aligned} c_1 &= b_0 c_0 + a_0 c_0 + a_0 b_0 \\ c_2 &= b_1 c_1 + a_1 c_1 + a_1 b_1 & c_2 = \\ c_3 &= b_2 c_2 + a_2 c_2 + a_2 b_2 & c_3 = \\ c_4 &= b_3 c_3 + a_3 c_3 + a_3 b_3 & c_4 = \end{aligned}$$

Not feasible! Why?

A 32-bit ALU

- · A Ripple carry ALU
- · Two bits decide operation
 - Add/Sub
 - AND
 - OR
 - LESS
- · 1 bit decide add/sub operation
- · A carry in bit
- · Bit 31 generates overflow and set bit



10

Carry-look-ahead adder

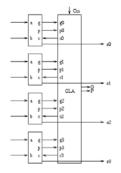
- An approach in-between our two extremes
- - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry?
 - $g_i = a_i b_i$ - When would we propagate the carry?
- · Did we get rid of the ripple?

$$p_i = a_i + b_i$$

```
\mathbf{c}_1 = \mathbf{g}_0 + \mathbf{p}_0 \mathbf{c}_0
c_2 = g_1 + p_1c_1 c_2 = g_1 + p_1g_0 + p_1p_0c_0
c_3 = g_2 + p_2 c_2 c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0
c_4 = g_3 + p_3 c_3
                         c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0
```

Feasible! Why?

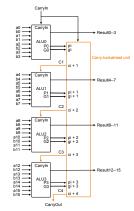
A 4-bit carry look-ahead adder



- · Generate g and p term for each bit
- · Use g's, p's and carry in to generate all C's
- · Also use them to generate block G and P
- CLA principle can be used recursively

13

Use principle to build bigger adders



- A 16 bit adder uses four 4-bit adders
- It takes block g and p terms and cin to generate block carry bits out
- Block carries are used to generate bit carries
 - could use ripple carry of 4-bit CLA adders
 - Could use rippic daily of 4-bit off au

Better: use the CLA principle again!

14

Delays in carry look-ahead adders

- · 4-Bit case
 - Generation of g and p: 1 gate delay
 - Generation of carries (and G and P): 2 more gate delay
 - Generation of sum: 1 more gate delay
- · 16-Bit case
 - Generation of g and p: 1 gate delay
 - Generation of block G and P: 2 more gate delay
 - Generation of block carries: 2 more gate delay
 - Generation of bit carries: 2 more gate delay
 - Generation of sum: 1 more gate delay
- · 64-Bit case
 - 12 gate delays

Multiplication

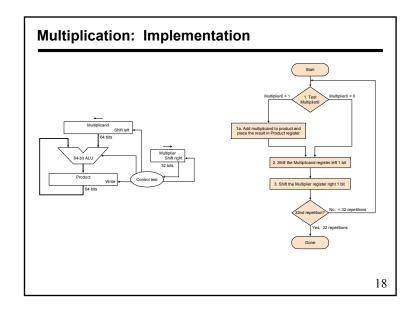
- · More complicated than addition
 - accomplished via shifting and addition
- · More time and more area
- · Let's look at 3 versions based on grade school algorithm

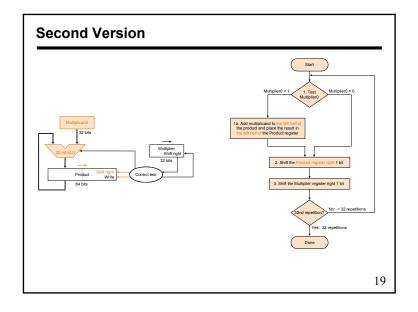
01010010 (multiplicand) x01101101 (multiplier)

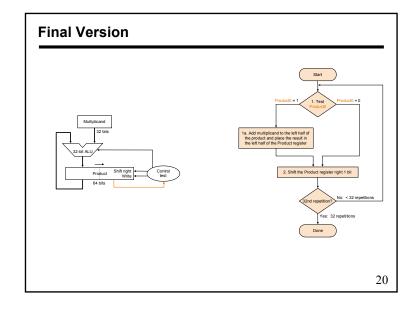
- Negative numbers: convert and multiply
- · Use other better techniques like Booth's encoding

15

Multiplication				
01010010 (multiplicand)	01010010 (multiplicand)			
x 01101101 (multiplier)	x01101101 (multiplier)			
0000000	0000000			
01010010 x1	01010010 x1			
01010010	01010010			
00000000 x0	00000000 x0			
001010010	001010010			
0101001000 x1	0101001000 x1			
0110011010	0110011010			
01010010000 x1	01010010000 x1			
10000101010	10000101010			
00000000000 x0	00000000000 x0			
010000101010	010000101010			
0101001000000 x1	0101001000000 x1			
0111001101010	0111001101010			
01010010000000 x1	01010010000000 x1			
10001011101010	10001011101010			
00000000000000 x0	00000000000000 x0			
0010001011101010	0010001011101010			
	1			







Multiplication Example

Itera-	multi-	Orignal algorithm	
tion	plicand	Step	Product
0	0010	Initial values	0000 0110
1	0010	1:0 ⇒ no operation	0000 0110
	0010	2: Shift right Product	0000 0011
2	0010	$1a:1 \Rightarrow \text{prod} = \text{Prod} + \text{Mcand}$	0010 0011
	0010	2: Shift right Product	0001 0001
3	0010	$1a:1 \Rightarrow \text{prod} = \text{Prod} + \text{Mcand}$	0011 0001
	0010	2: Shift right Product	0001 1000
4	0010	1:0 ⇒ no operation	0001 1000
	0010	2: Shift right Product	0000 1100

2.1

Signed Multiplication

- Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
- Let F = 0 (shift flag)
- Let result A[n-1:0] = 0....00
- · For n-1 steps do
 - A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
 - F<= F .or. (M[n-1] .and. Q[0]) /* determine shift bit */
 - Shift A and Q with F, i.e.,
 - -A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]
- · Do the correction step
 - A[n-1:0] = A[n-1:0] M[n-1:0] x Q[0] /* subtract partial product */
 - Shift A and Q while retaining A[n-1]
 - This works in all cases excepts when both operands are 10..00

22

Booth's Encoding

- · Numbers can be represented using three symbols, 1, 0, and -1
- · Let us consider -1 in 8 bits
 - One representation is 11111111
 - Another possible one 0000001
- Another example +14
 - One representation is 0 0 0 0 1 1 1 0
 - Another possible one 000100-10
- · We do not explicitly store the sequence
- · Look for transition from previous bit to next bit
 - 0 to 0 is 0; 0 to 1 is -1; 1 to 1 is 0; and 1 to 0 is 1
- Multiplication by 1, 0, and -1 can be easily done
- · Add all partial results to get the final answer

Using Booth's Encoding for Multiplication

- · Convert a binary string in Booth's encoded string
- · Multiply by two bits at a time
- · For n bit by n-bit multiplication, n/2 partial product
- Partial products are signed and obtained by multiplying the multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)
- · Add partial products to obtain the final result
- Example, multiply 0111 (+7) by 1010 (-6)
- Booths encoding of 1010 is -1 +1 -1 0
- With 2-bit groupings, multiplication needs to be carried by -1 and -2

· Add the two partial products to get 11010110 (-42) as result

23