An ALU (arithmetic logic unit)

* Let's build an ALU to support the andi and ori instructions :D
— we'll just build a 1 bit ALU, and use 32 of them H

operation b]
l op |a res D

a — result :D

b

+ Possible Implementation (sum-of-products): |

Review: The Multiplexor

+ Selects one of the inputs to be the output, based on a control input

S
l note: we call this a 2-input mux
A _,' c even though it has 3 inputs!
B —f,

* Lets build our ALU using a MUX:

Different Implementations

* Not easy to decide the “best” way to build something

— Don't want too many inputs to a single gate

— Don’t want to have to go through too many gates

— for our purposes, ease of comprehension is important
* Let's look at a 1-bit ALU for addition:

Carryin

ab+ac, +bc,
a xor b xor c;,

out
sum

+ — sum

Carryout

* How could we build a 1-bit ALU for add, and, and or?
* How could we build a 32-bit ALU?

Building a 32 bit ALU

Carryin

Result

Resultt

Result2

CarryOut

Result3t

What about subtraction (a—b) ?

+ Two's complement approach: just negate b and add.
* How do we negate?

* A very clever solution:

Carryin ‘
|

{ Result

Camyout

Tailoring the ALU to the MIPS

* Need to support the set-on-less-than instruction (slt)
— remember: sltis an arithmetic instruction
— produces a 1 if rs <rt and 0 otherwise
— use subtraction: (a-b) <0 impliesa<b

» Need to support test for equality (beq $t5, $t6, $t7)

— use subtraction: (a-b) =0 impliesa=b

Supporting sit

* Can we figure out the idea?

Result

a CarryOut

Garryin |

- Result

Less

1 Set

Overflow - Overflow
detection

Test for equality

* Notice control lines:

Resultd

000 = and

001 = or

010 = add

110 = subtract a Result1

111 = slt o —
S e

0 Less
CarryOuf

*Note: zero is a 1 when the result is zero!

Result3t

o—» Zero

Overflow

Conclusion

* We can build an ALU to support the MIPS instruction set
— key idea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
* Important points about hardware
— all of the gates are always working
— the speed of a gate is affected by the number of inputs to the gate
— the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)
* Our primary focus: comprehension, however,

— Clever changes to organization can improve performance
(similar to using better algorithms in software)

— we’ll look at two examples for addition and multiplication

A 32-bit ALU
* ARipple carry ALU t]__ —
« Two bits decide operation o —] p—_—
1 Lassuie
— Add/Sub | Cernydny |
- AND [1] '
_ OR " —) ‘.f.'_ﬁ'f"__.' —
- LESS | Carrving
« 1 bit decide add/sub operation Ea— :]:ML
+ Acarry in bit - [] ey
«+ Bit 31 generates overflow and set bit 2o
Fasultdl
Bat
Chvur vy
10

9
Problem: ripple carry adder is slow
+ Is a32-bit ALU as fast as a 1-bit ALU?
+ Is there more than one way to do addition?
— two extremes: ripple carry and sum-of-products
Can you see the ripple? How could you get rid of it?
c, = byc, + azc, + agb,
c, = b,c; + a;¢c;, +ab;, ¢, =
c; = byc, + a,¢c, + ab, ¢ =
c, = bycy + ajc;+ab; ¢, =
Not feasible! Why?
11

Carry-look-ahead adder

« An approach in-between our two extremes

* Motivation:
— If we didn't know the value of carry-in, what could we do?
— When would we always generate a carry? g; = a; b;
— When would we propagate the carry? P;: = a; + b;

« Did we get rid of the ripple?

€1 = gy + PoSo

C; = g1 + PiC; S, = g; + P19o + Pi1PoCo

C3 = g, + PG, C3 = g + P91 + PP19o + P2P1PoCo

Cy = g3 + P3C3 €y = g3 + P3g; + PsP29: + P3P2P190 + P3P2PiPoCo

Feasible! Why?

12

A 4-bit carry look-ahead adder

} cin
—ls e
P
—lb o fe—
-0
—s g—lg
p—{n * Generate g and p term for each bit
il i T « Useg’s, p’s and carry in to generate all C’s
Al « Also use them to generate block G and P
NN ; : o + CLA principle can be used recursively
—lp i
LI § 2
¥ =¥
o L] = <]

13

Use principle to build bigger adders

Carryin

Delays in carry look-ahead adders

* 4-Bit case
— Generation of g and p: 1 gate delay
— Generation of carries (and G and P): 2 more gate delay
— Generation of sum: 1 more gate delay

+ 16-Bit case
— Generation of g and p: 1 gate delay
— Generation of block G and P: 2 more gate delay
— Generation of block carries: 2 more gate delay
— Generation of bit carries: 2 more gate delay
— Generation of sum: 1 more gate delay

+ 64-Bit case
— 12 gate delays

15

E 3 cemin Result0--3
51— aLuo
2— =
g
o1
i
ot —»[Garyin
e :: Resultd--7
[, « A 16 bit adder uses four 4-bit adders
e BIF=t « It takes block g and p terms and cin to generate
b7 —| e, ., block carry bits out
" « Block carries are used to generate bit carries
i Resute-11 — could use ripple carry of 4-bit CLA adders
e Az v — Better: use the CLA principle again!
W= S5t
e o
— g,
a2 —[oy |
21 :: Result12-15
S AL s
Mo BE=ad
S G laiva
CarryOut
14
Multiplication
* More complicated than addition
— accomplished via shifting and addition
* More time and more area
* Let's look at 3 versions based on grade school algorithm
01010010 (multiplicand)
%01101101 (multiplier)
* Negative numbers: convert and multiply
* Use other better techniques like Booth’s encoding
16

Multiplication: Implementation

Multplier0 = 1 Multiplier0 = 0

Multiplierd

1a. Add multiplicand to product and
place the resultin Product register

2. Shift the Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit

B2nd repetition?)

Yes: 32repetitions

No: < 32 repetitions

18

Multiplication
01010010 (multiplicand) 01010010 (multiplicand)
x01101101 (multiplier) x01101101| (multiplier)
00000004Q 00000000
01010010 =x1 01010010 =1
0101001p
0000000090 x0 00000000p =xO
0010100p0 001010010
01010010p0 010100100 x1
0110011010 0110011p10
01010010000 01010010p00 =x1
10000101010 10000101010
000000000000 =x0 000000000000 x0
010000101010 0100001p1010
0101001900000 =x1 0101001000000 x1
0111001101010 0111001101010
0101001Q9000000 =x1 01010010p00000 =x1
10001010101010 10001011101010
000000000000000 x0 000000000000000 x0O
0010001011101010 0010001011101010
Second Version
Multiplier0 = 1 Multiplier0 = 0
Wil
1a. Add multiplicand to
e product and place the resul i
s2bis ot of i Proctrogiter
BT

Product Wite

64 bits

2. Shift the 111 bit
3. Shift the Multplier register right 1 bit

32nd repetition?,

Yes: 32 repeitions

No: < 32 repetiions

Final Version

Muliplicand

32bits

Shift right
Product e

64 bits

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

20

Multiplication Example

Itera- multi- Orignal algorithm
tion plicand Step Product
0 0010 Initial values 0000 0110
0010 1:0 = no operation 0000 0110
1 0010 2: Shift right Product 0000 0011
2 0010 la:1= prod = Prod + Mcand 00100011
0010 2: Shift right Product 0001 0001
3 0010 la:1= prod = Prod + Mcand 0011 0001
0010 2: Shift right Product 0001 1000
4 0010 1:0 = no operation 0001 1000
0010 2: Shift right Product 0000 1100 21

Signed Multiplication

* Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
* Let F =0 (shift flag)
* Let result A[n-1:0] =0....00
* For n-1 steps do
— A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
— F<=F .or. (M[n-1] .and. Q[0]) /* determine shift bit */
— Shift Aand Q with F, i.e.,
— A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]
* Do the correction step
— A[n-1:0] = A[n-1:0] - M[n-1:0] x Q[0] /* subtract partial product */
— Shift A and Q while retaining A[n-1]
— This works in all cases excepts when both operands are 10..00

22

Booth’s Encoding

* Numbers can be represented using three symbols, 1, 0, and -1
* Let us consider -1 in 8 bits
— One representationis 11111111
— Another possibleone 0000000 -1
« Another example +14
— One representationis 00001110
— Another possibleone 000100-10
* We do not explicitly store the sequence
* Look for transition from previous bit to next bit
— 0to0is0;0to1is-1;1to1is0;and1to0is 1
* Multiplication by 1, 0, and -1 can be easily done
* Add all partial results to get the final answer

23

Using Booth’s Encoding for Multiplication

« Convert a binary string in Booth’s encoded string

« Multiply by two bits at a time

« For n bit by n-bit multiplication, n/2 partial product

< Partial products are signed and obtained by multiplying the
multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)

« Add partial products to obtain the final result

« Example, multiply 0111 (+7) by 1010 (-6)

* Booths encoding of 1010 is -1 +1 -1 0

« With 2-bit groupings, multiplication needs to be carried by -1 and -2

0 (multiplication by -2)

1111
1110 O (multiplication by -1 and shift by 2 positions)

o o

01
10

« Add the two partial products to get 11010110 (-42) as result

24

