Example of multiple operands

* Instructions may have 3, 2, 1, or 0 operands
* Number of operands may affect instruction length
+ Operand order is fixed (destination first, but need not that way)

add $s0, $s1, $s2 ; Add $s2 and $s1 and store result in $s0
add $s0, $s1 ; Add $s1 and $s0 and store result in $s0
add $s0 ; Add contents of a fixed location to $s0

add ; Add two fixed locations and store result

Where operands are stored

+ Memory locations

— Instruction includes address of location
+ Registers

— Instruction includes register number
« Stack location

— Instruction opcode implies that the operand is in stack
+ Fixed register

— Like accumulator, or depends on inst

— Hiand Lo register in MIPS
« Fixed location

— Default operands like interrupt vectors

MIPS arithmetic

« Allinstructions have 3 operands
+ Operand order is fixed (destination first)

Example:
C code: A=B+C
MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

MIPS arithmetic

« Design Principle: simplicity favors regularity. Why?
« Of course this complicates some things...

C code: A=B+C+D;
E=F - A;
MIPS code: add $t0, $s1, $s2

add $s0, $t0, $s3
sub $s4, $s5, $s0

+ Operands must be registers, only 32 registers provided
« Design Principle: smaller is faster. Why?
— More register will slow register file down.

Registers vs. Memory

« Arithmetic instructions operands must be registers,
— only 32 registers provided

« Compiler associates variables with registers

« What about programs with lots of variables

Control Input
Memory

Datapath Output

Processor 10

Memory Organization

+ Viewed as a large, single-dimension array, with an address.
+ A memory address is an index into the array

« "Byte addressing" means that the index points to a byte of memory.

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

I T N O N

Memory Organization

« Bytes are nice, but most data items use larger "words"
« For MIPS, a word is 32 bits or 4 bytes.

0 | 32 bits of data

4 | 32bits of data

s hold 32 bits of data

8 | 32bits of data he

12 | 32bits of data

+ 232 pytes with byte addresses from 0 to 232-1
« 2% words with byte addresses 0, 4, 8, ... 232-4

« Words are aligned
i.e., what are the least 2 significant bits of a word address?

Addressing within a word

+ Each word has four bytes

+ Which byte is first and which is last

« Two Choices
— Least significant byte is byte “0” -> Little Endian
— Most significant byte is byte “0” -> Big Endian

03210 olo 12 3
4|17 6 5 4 4|4 56 7
8|1 1009 8 8|8 9 10 11
12 (o)) E—

7 8
Instructions Addressing
* Load and store instructions + Memory address for load and store has two parts
* Example: — Avregister whose content is known
— An offset stored in 16 bits
C code: A[8] = h + A[8]; « The offset can be positive or negative
MIPS code: 1w §t0, 32($s3) — It is written in terms of number of bytes
add $t0, $s2, $t0 — Itis but in instruction in terms of number of words
sw $t0, 32($s3) — 32 byte offset is written as 32 but stored as 8
« Address is content of register + offset
+ Store word has destination last « All addresses have both these components
* Remember arithmetic operands are registers, not memory! - If no register needs to be used then use register 0
— Register 0 always stores value 0
« If no offset, then offset is 0
9 10
Our First Example So far we’ve learned:
« Can we figure out the code? < MIPS
— loading words but addressing bytes
swap (int v[], int k) ; — arithmetic on registers only
{ int temp;
te = v[k] . .
oIE = wlkt1]; « Instruction Meaning
v[k+l] = temp;
} swap: add $sl, $s2, $s3 $sl = $s2 + $s3
Q :Zilszf'sj?'s: sub $s1, $s2, $s3 $s1l = $s2 - $s3
1w $15, 0($2) 1w $s1, 100($s2) $s1l = Memory[$s2+100]
1w $16, 4(s$2) -
s: i sw $s1, 100($s2) Memory[$s2+100] $s1
sw $15, 4($2)
jr $31
11 12

Machine Language

Instructions, like registers and words of data, are also 32 bits long
— Example: add $t0, $s1, $s2
— registers have numbers, $t0=8, $s1=17, $s2=18

Instruction Format:

[000000]10001] 10010] 01000] 00000] 100000 |

‘ op ‘ rs ‘ rt ‘ rd ‘ shamt‘ funct ‘

Can you guess what the field names stand for?

Machine Language

+ Consider the load-word and store-word instructions,

— What would the regularity principle have us do?

— New principle: Good design demands a compromise
+ Introduce a new type of instruction format

— I-type for data transfer instructions

— other format was R-type for register
+« Example: 1w $t0, 32($s2)

[ss] 18 [8 | 32

‘ op‘ rs | rt ‘16bitnumber

* Where's the compromise?

13 14
Control Conditional Execution
« Decision making instructions « A simple conditional execution
— alter the control flow, « Depending on i==j or il=j, result is different
— i.e., change the "next" instruction to be executed
« MIPS conditional branch instructions:
bne $t0, $tl, Label
beq $t0, $tl, Label
* Example: if(i==j)h=i+j;
bne $s0, $sl, Label
add $s3, $s0, $sl
Label:
15 16
Instruction Sequencing So far:
* MIPS unconditional branch instructions: + Instruction Meaning
j label
« Example: add $s1,$s2,$s3 $s1 = $s2 + $s3
f, g, and h are in registers $s3, $s4, and $s5 sub $s1,$s2,$s3 $s1 = $s2 - $s3
1w $s1,100($s2) $sl = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
b‘elg :sg, :si’ Is“agl bne $s4,$s5,L Next instr. is at Label if $s4 ° $s5
s i r ¥84, 38 beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
iaz’]fl add $s3, $s4, $s5 j Label Next instr. is at Label
exit:
« Formats:
« Can you build a simple for loop?
i plef P R ‘ op ‘ rs ‘ rt ‘ rd shamt| funct ‘
I ‘ op ‘ rs ‘ rt ‘ 16 bit address ‘
J ‘ op ‘ 26 bit address ‘
17 18

Control Flow

* We have: beq, bne, what about Branch-if-less-than?

* New instruction:
if $sl < $s2 then

$t0 =1
slt $t0, $s1, $s2 else
$t0 =0

« Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

* Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Constants

+ Small constants are used quite frequently (50% of operands)
eg., A=A+5;
B=B+1;
C=C-18;
+ Solutions? Why not?
— put 'typical constants' in memory and load them.
— create hard-wired registers (like $zero) for constants like one.

* MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

* How do we make this work?

19 20
Other Issues Overview of MIPS
« Things we are not going to cover « simple instructions all 32 bits wide
S_UPPO" for procedures « very structured, no unnecessary baggage
linkers, loaders, memcfry layout « only three instruction formats
stacks, frames, recursion
manipulating strings and pointers R " p
interrupts and exceptions ‘ °P ‘ rs ‘ rt ‘ rd ‘ s a’“f" unct ‘
tem calls and i I ‘ op ‘ rs ‘ rt ‘ 16 bit address ‘
« Some of these we'll talk about later 7 ‘ op ‘ 26 bit address ‘
« We've focused on architectural issues
— basics of MIPS assembly language and machine code « rely on compiler to achieve performance
— we’ll build a pr to these instr — what are the compiler's goals?
+ help compiler where we can
21 22
Various Addressing Modes Addresses in Branches and Jumps
Temi
* Instructions:
| — bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5
[I~1~1 =1 | == g Nagartar beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
i o 1 j Label Next instruction is at Label
| —
[+ Formats:
!
I ‘ op ‘ rs rt 16 bit address ‘
B 7 ‘ op ‘ 26 bit address ‘
111 Ao | Moy "
[| « Addresses are not 32 bits
[L] t P I — How do we handle this with load and store instructions?
. Persciadirart acdrmming
=1 Ackirem] Mooy
'l) &> = I
ro e
I 1
23 24

Addresses in Branches

Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

Formats:

I ‘ op ‘ rs ‘ rt ‘ 16 bit address

Could specify a register (like Iw and sw) and add it to address
— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

Jump instructions just use high order bits of PC
— address boundaries of 256 MB

25

To summarize:

MIPS operands

Comments.

32 registers 5

nwes,

aritmatic. MIPS rogistor Szer0 aways oquals 0.

 ecerve or th ascemier

Rogitor Sat s

- emory(], w
2 memory |Memory(4] bya n
o
MIPS assembly language
Category Insiruciion Example Meaning
) Ss2, 553 [F5L = 552 + 553 [Thvoe operands; datan registers
[rrinmeic [subact [Trros operans: oata i rgistors

rpE—

Epyp—

Data transfer

[Condtional

oed wor o rom memory o egiser
[store word [ors om registe o memos
cad byte
e byte 1
o 551 100-2" Loads consant inupper 16 bis
oo [P 55, 590 25 [ieT = hew B oo PGt orancn
pC+ 4+ 100
oranch on notequal[ore 501 (& = =000 ot equa test, Peroative
P 44 4100

[Foron toss bam

[re=2
ot ==

[Compare ess tran; fo beg, bre

[setioss bam
mmediate

e 521 -0

[Compars ess tan constant

tional mp

00 10 10000

=y
jump regster

ump ant i

[Forprocedure car

26

