Example of multiple operands

« Instructions may have 3, 2, 1, or 0 operands
« Number of operands may affect instruction length
« Operand order is fixed (destination first, but need not that way)

add $s0, $s1, $s2 ; Add $s2 and $s1 and store result in $s0
add $s0, $s1 ; Add $s1 and $s0 and store result in $s0
add $s0 ; Add contents of a fixed location to $s0

add ; Add two fixed locations and store result

Where operands are stored

« Memory locations

— Instruction includes address of location
* Registers

— Instruction includes register number
- Stack location

— Instruction opcode implies that the operand is in stack
« Fixed register

— Like accumulator, or depends on inst

— Hiand Lo register in MIPS
« Fixed location

— Default operands like interrupt vectors

MIPS arithmetic

< All instructions have 3 operands
« Operand order is fixed (destination first)

Example:
C code: A=B+C
MIPS code: add $s0, $sl, $s2

(associated with variables by compiler)

MIPS arithmetic

« Design Principle: simplicity favors regularity. Why?
« Of course this complicates some things...

C code: A=B+C+D;
E=F - A;
MIPS code: add $t0, $s1, $s2

add $s0, $t0, $s3
sub $s4, $s5, $s0

« Operands must be registers, only 32 registers provided
« Design Principle: smaller is faster. Why?
— More register will slow register file down.

Registers vs. Memory

« Arithmetic instructions operands must be registers,
— only 32 registers provided

« Compiler associates variables with registers
« What about programs with lots of variables

Control Input
Memory
Datapath Output
Processor /0

Memory Organization

« Viewed as a large, single-dimension array, with an address.
« A memory address is an index into the array
« "Byte addressing” means that the index points to a byte of memory.

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

L= Y S S =

Memory Organization

« Bytes are nice, but most data items use larger "words"
« For MIPS, a word is 32 bits or 4 bytes.

0 | 32bits of data

4 | 32bits of data

Registers hold 32 bits of data

32 bits of data

12 | 32bits of data
« 232 pytes with byte addresses from 0 to 232-1
* 23 words with byte addresses 0, 4, 8, ... 232-4

* Words are aligned
i.e., what are the least 2 significant bits of a word address?

Addressing within a word

« Each word has four bytes

* Which byte is first and which is last

« Two Choices
— Least significant byte is byte “0” -> Little Endian
— Most significant byte is byte “0” -> Big Endian

0|3 210 0lo 1 2 3
407 6 5 4 404 5 6 7
8|1 109 8 8|8 910 1
o - o -

Instructions

« Load and store instructions

« Example:
C code: A[8] = h + A[8];
MIPS code: 1w $t0, 32($s3)

add $t0, $s2, $t0
sw $t0, 32($s3)

« Store word has destination last
« Remember arithmetic operands are registers, not memory!

Addressing

« Memory address for load and store has two parts
— Aregister whose content is known
— An offset stored in 16 bits

* The offset can be positive or negative
— Itis written in terms of number of bytes
— Itis but in instruction in terms of number of words
— 32 byte offset is written as 32 but stored as 8

« Address is content of register + offset

« All addresses have both these components

« If no register needs to be used then use register 0
— Register 0 always stores value 0

« If no offset, then offset is 0

10

Our First Example

« Can we figure out the code?

swap (int v[], int k);
{ int temp;
temp = v[k]
vik] = v[k+1];
v[k+l] = temp;
} swap:

g muli $2, $5, 4
add $2, $4, $2
1w $15, 0($2)
1w $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

So far we’ve learned:

« MIPS
— loading words but addressing bytes
— arithmetic on registers only
« Instruction Meaning
add $sl1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1l = $s2 - $s3
1w $sl, 100($s2) $sl = Memory[$s2+100]
sw $s1, 100 ($s2) Memory [$s2+100] = $s1

12

Machine Language

« Instructions, like registers and words of data, are also 32 bits long
— Example: add $t0, $s1, $s2
— registers have numbers, $t0=8, $s1=17, $s2=18

« Instruction Format:

[00000010001] 10010] 01000] 00000] 100000 |

‘ op ‘ rs ‘ rt ‘ rd ‘ shamt‘ funct ‘

« Can you guess what the field names stand for?

13

Machine Language

« Consider the load-word and store-word instructions,

— What would the regularity principle have us do?

— New principle: Good design demands a compromise
« Introduce a new type of instruction format

— I-type for data transfer instructions

— other format was R-type for register
« Example: 1w $t0, 32($s2)

[35] 18 [8 | 32 |

‘ op‘ rs ‘ rt |16bitnumber ‘

* Where's the compromise?

14

Control

« Decision making instructions
— alter the control flow,
— i.e., change the "next" instruction to be executed

« MIPS conditional branch instructions:

bne $t0, $tl, Label
beq $t0, $tl, Label

» Example: if (i=sj) h=i+j;

bne $s0, $sl, Label
add $s3, $s0, $sl

15

Conditional Execution

« A simple conditional execution
« Depending on i==j or i!=j, result is different

16

Instruction Sequencing

« MIPS unconditional branch instructions:
j label
« Example:
f, g, and h are in registers $s3, $s4, and $s5

if (it=j) beq $s4, $s5, Labl
f=g-h; sub $s3, $s4, $s5
else j exit
f=g+h; Labl: add $s3, $s4, $s5
exit: .

* Can you build a simple for loop?

17

So far:

Control Flow

« We have: beq, bne, what about Branch-if-less-than?

« New instruction:
if $sl1 < $s2 then

$t0 =1
slt $t0, $sl1l, $s2 else
$t0 = 0

« Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

* Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

19

« Instruction Meaning
add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $sl = $s2 - $s3
1w $s1,100($s2) $sl = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $sl
bne $s4,$s5,L Next instr. is at Label if $s4 ° $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label
* Formats:
R op ‘ rs ‘ rt ‘ rd ‘ shamt‘ funct
I ‘ op ‘ rs ‘ rt ‘ 16 bit address ‘
J ‘ op ‘ 26 bit address ‘
18
Constants
+ Small constants are used quite frequently (50% of operands)
e.g., A=A+5;
B=B+1;
C=C-18;
« Solutions? Why not?
— put 'typical constants' in memory and load them.
— create hard-wired registers (like $zero) for constants like one.
* MIPS Instructions:
addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4
* How do we make this work?
20

Supporting Procedures

* How to make procedures work?
* How to make their implementation efficient?

+ Transfer controls to callee and back to caller
jal procedure_address
jr $ra
* Pass parameters and results
$a0-$a3, $v0-$vl, $ra, stack
» Acquire local storage
Use stack: $sp, $fp
+ Preserve and restore caller’s context

21

Policy of Use Conventions

Other Issues

« Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions
« Some of these we'll talk about later
« We've focused on architectural issues
— basics of MIPS assembly language and machine code
— we’ll build a processor to execute these instructions.

23

Name |Regist b Usage
$zero 0 the constant value 0
Sv0-$vl 2-3 values for results and expression evaluation
$a0-$%a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
St8-$t9 24-25 more temporaries
Sgp 28 global pointer
Ssp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address
22
Overview of MIPS

« simple instructions all 32 bits wide
« very structured, no unnecessary baggage
« only three instruction formats

R ‘ op ‘ rs | rt ‘ rd shamt| funct ‘
I ‘ op ‘ rs | rt ‘ 16 bit address ‘
J ‘ op ‘ 26 bit address ‘

« rely on compiler to achieve performance
— what are the compiler's goals?
« help compiler where we can

24

Various Addressing Modes

T I medats cbdvmaig

[=1 =1 []

2. Reginer adiressizg

[FI=-T T =1-1° Registors
T X Fer

la. PO relemive eddress=g

Addresses in Branches and Jumps

* Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

* Formats:

I l op [rs rt 16 bit address l

J l op [26 bit address l

+ Addresses are not 32 bits
— How do we handle this with load and store instructions?

26

111 A] oo
Ward
Mooy
ard
25
Addresses in Branches
* Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Nextinstruction is at Label if $t4=$t5
« Formats:
I l op [rs [rt [16 bit address

« Could specify a register (like lw and sw) and add it to address
— use Instruction Address Register (PC = program counter)
— most branches are local (principle of locality)

« Jump instructions just use high order bits of PC
— address boundaries of 256 MB

27

To summarize:

MIPS operands
Name Example Comments

. 5t9, $zero, [Fastlocations for data. In MIPS, data must be in registers to perform
arthmetic. MIPS register $zero always equals 0. Register Sat is

32 registers

o, . reserved for the assembler to handie large constans.
Memony[0], [Accessed only by data transier instructons. MIPS uses byle addresses, so
2% memory |Memoryi4], .. seauential words difer by 4. Memory holds data structures, such as arravs,
words and spilled registers, such as those saved on

MIPS assembly language

Cateqory. Instruction Example Meaning Comments
200 add §s1, $s2, §s3 [5s1 = §s2 + $83 [Three operands; data in registers
Arithmetic [subtract Sub §s1, 553 — 553 [Three operands; data in registers
200 immediate ddi 551, 652, 100 [ssi = §s2 + 100 Used to add constants
load word v ssl, Word from memory to register
store word [Word from register to memory
Data transfer [ioad byte Byt from memory to register
store byte

Byte from register to memory
Loads constant in upper 16 bits

(oad upper immediate 551=100°2"°

anchonequal [Pea 51, 52, 75 [1¢el — Shgene Equal tost; PG rolative branch
PC 44 100
Cranch on noteaual [Boe S5, 552, 25 [1GoL - S0t ot squaltos; PC1elaive
Conditional o arin
branch otontess than |51t 551, 557, 553 Jiger - Compars less than; for beq,bne
eise
Setioss tan Fe7, 100 ez <1 Compars less than consiant
immediate eise 521 =0
ump 90 10 10000 g to et o
Uncondi- [jump register qoto sza For swich, procedure retur
ional jump __fjump and ine ja 52 = PC + 4; g0 0 10000 [For

28

