
1

• A given program will require

– some number of instructions (machine instructions)

– some number of cycles

– some number of seconds

• We have a vocabulary that relates these quantities:

– cycle time (seconds per cycle)

– clock rate (cycles per second)

– CPI (cycles per instruction)
a floating point intensive application might have a higher CPI

– MIPS (millions of instructions per second)
this would be higher for a program using simple instructions

Now that we understand cycles

2

Performance

• Performance is determined by execution time
• Do any of the other variables equal performance?

– # of cycles to execute program?
– # of instructions in program?
– # of cycles per second?
– average # of cycles per instruction?
– average # of instructions per second?

• Common pitfall: thinking one of the variables is indicative of
performance when it really isn’t.

3

• Suppose we have two implementations of the same instruction set
architecture (ISA).

For some program,

Machine A has a clock cycle time of 10 ns. and a CPI of 2.0
Machine B has a clock cycle time of 20 ns. and a CPI of 1.2

What machine is faster for this program, and by how much?

• If two machines have the same ISA which of our quantities (e.g., clock rate,
CPI, execution time, # of instructions, MIPS) will always be equivalent to
performance?

CPI Example

4

• A compiler designer is trying to decide between two code sequences
for a particular machine. Based on the hardware implementation,
there are three different classes of instructions: Class A, Class B,
and Class C, and they require one, two, and three cycles
(respectively).

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C
The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

of Instructions Example

5

• Two different compilers are being tested for a 100 MHz. machine with
three different classes of instructions: Class A, Class B, and Class
C, which require one, two, and three cycles (respectively). Both
compilers are used to produce code for a large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

• Which sequence will be faster according to MIPS?
• Which sequence will be faster according to execution time?

MIPS example

6

• Performance best determined by running a real application
– Use programs typical of expected workload
– Or, typical of expected class of applications

e.g., compilers/editors, scientific applications, graphics, etc.
• Small benchmarks

– nice for architects and designers
– easy to standardize
– can be abused

• SPEC (System Performance Evaluation Cooperative)
– companies have agreed on a set of real program and inputs
– can still be abused (Intel’s “other” bug)
– valuable indicator of performance (and compiler technology)

Benchmarks

7

SPEC ‘89

• Compiler “enhancements” and performance

0

100

200

300

400

500

600

700

800

tomcatvfppppmatrix300eqntottlinasa7doducspiceespressogcc

Benchmark
Compiler

Enhanced compiler

S
P

E
C

 p
er

fo
rm

an
ce

 ra
tio

8

SPEC ‘95

Benchmark Description
go Artificial intelligence; plays the game of Go
m88ksim Motorola 88k chip simulator; runs test program
gcc The Gnu C compiler generating SPARC code
compress Compresses and decompresses file in memory
li Lisp interpreter
ijpeg Graphic compression and decompression
perl Manipulates strings and prime numbers in the special-purpose programming language Perl
vortex A database program
tomcatv A mesh generation program
swim Shallow water model with 513 x 513 grid
su2cor quantum physics; Monte Carlo simulation
hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations
mgrid Multigrid solver in 3-D potential field
applu Parabolic/elliptic partial differential equations
trub3d Simulates isotropic, homogeneous turbulence in a cube
apsi Solves problems regarding temperature, wind velocity, and distribution of pollutant
fpppp Quantum chemistry
wave5 Plasma physics; electromagnetic particle simulation

9

SPEC ‘95

Does doubling the clock rate double the performance?
Can a machine with a slower clock rate have better performance?

Clock rate (MHz)

S
P

E
C

in
t

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro

Pentium
Clock rate (MHz)

S
P

E
C

fp

Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

10

Execution Time After Improvement =

Execution Time Unaffected +(Execution Time Affected / Amount of Improvement)

• Example:

"Suppose a program runs in 100 seconds on a machine, with
multiply responsible for 80 seconds of this time. How much do we have to
improve the speed of multiplication if we want the program to run 4 times
faster?"

How about making it 5 times faster?

• Principle: Make the common case fast

Amdahl's Law

11

• Suppose we enhance a machine making all floating-point instructions run
five times faster. If the execution time of some benchmark before the
floating-point enhancement is 10 seconds, what will the speedup be if half of
the 10 seconds is spent executing floating-point instructions?

• We are looking for a benchmark to show off the new floating-point unit
described above, and want the overall benchmark to show a speedup of 3.
One benchmark we are considering runs for 100 seconds with the old
floating-point hardware. How much of the execution time would floating-
point instructions have to account for in this program in order to yield our
desired speedup on this benchmark?

Example

12

• Performance is specific to a particular program/s
– Total execution time is a consistent summary of performance

• For a given architecture performance increases come from:
– increases in clock rate (without adverse CPI affects)
– improvements in processor organization that lower CPI
– compiler enhancements that lower CPI and/or instruction count

• Pitfall: expecting improvement in one aspect of a machine’s
performance to affect the total performance

• You should not always believe everything you read! Read carefully!
(see newspaper articles, e.g., Exercise 2.37)

Remember

13

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

14

Instructions:

• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

Design goals: maximize performance and minimize cost, reduce design time

15

Architecture Specification

• Data types:
– bit, byte, bit field, signed/unsigned integers logical, floating point,

character
• Operations:

– data movement, arithmetic, logical, shift/rotate, conversion,
input/output, control, and system calls

• # of operands:
– 3, 2, 1, or 0 operands

• Registers:
– integer, floating point, control

• Instruction representation as bit strings

16

Characteristics of Instruction Set

• Complete
– Can be used for a variety of application

• Efficient
– Useful in code generation

• Regular
– Expected instruction should exist

• Compatible
– Programs written for previous versions of machines need it

• Primitive
– Basic operations

• Simple
– Easy to implement

• Smaller
– Implementation

