
1

Computer System Organization and Design

• Instructor
– Zhao Zhang
– Tel: 294-7940
– Email: zzhang@iastate.edu
– Office Hours: MWF 10:00-11:00

• Teaching Assistant
– See Web Page for Information

• Web Page
– Follow link from home page of department

• Text Book: Computer Organization and Design 2nd edition
– Patterson and Hennessy

2

Outline of the Course

• Learn computer architecture, design and organization
• Evaluating computer system performance
• Instruction set design
• Computer algorithms and ALU design
• Processor data path design
• Pipelined control and performance
• Memory system design
• I/O system design
• Putting it all together
• Examples

3

Introduction

• Rapidly changing field:
– vacuum tube -> transistor -> IC -> VLSI (see section 1.4)
– memory capacity and processor speed is doubling every 1.5 years:

• Things you’ll be learning:
– how computers work, a basic foundation
– how to analyze their performance (or how not to!)
– issues affecting design of modern processors (caches, pipelines)

• Why learn this stuff?
– You want to design state-of-art system
– you want to call yourself a “computer scientist or engineer”
– you want to build software people use (need performance)
– you need to make a purchasing decision or offer “expert” advice

4

What is a computer?

• Components:
– input (mouse, keyboard)
– output (display, printer)
– memory (disk drives, DRAM, SRAM, CD)
– network

• Our primary focus:
– understanding performance
– the processor (datapath and control)
– implemented using millions of transistors
– impossible to understand by looking at each transistor
– we need an abstraction

5

Abstraction

• Delving into the depths
reveals more information

• An abstraction omits unneeded detail,
helps us cope with complexity

What are some of the details that
appear in these familiar abstractions?

swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

swap:
 muli $2, $5,4
 add $2, $4,$2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Binary machine
language
program
(for MIPS)

C compiler

Assembler

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)

6

What is Computer Architecture?

• A programmer’s view of machine
• What does it include?

• What is Computer Organization, Structure, and Function?

7

Instruction Set Architecture

• A very important abstraction
– interface between hardware and low-level software
– standardizes instructions, machine language bit patterns, etc.
– advantage: different implementations of the same architecture
– disadvantage: sometimes prevents using new innovations

True or False: Binary compatibility is extraordinarily important?

• Modern instruction set architectures:
– 80x86/Pentium/K6, PowerPC, DEC Alpha, MIPS, SPARC, HP

• Historical Perspective

8

A View of Hardware/Software Hierarchy

• Hardware and software are layered
• Some functions can be moved back and forth
• System software is a collection of programs

– OS, compilers are some examples
– It makes job of individuals user easy

• Application software programs
– Used by many users

9

View of Software

• Software means different things to different people

10

Internal Structure of a Processor Chip

• Major Components
– Instruction cache
– Instruction Fetch
– Instruction Decode
– Control/Microcode
– Register File
– Data path
– Data Cache
– I/O Unit
– Memory Buffer
– Advanced Units

11

Chip Manufacturing Process

12

Where we are headed

• Performance issues (Chapter 2) vocabulary and motivation
• A specific instruction set architecture (Chapter 3)
• Other instruction set example (From Outside)
• Arithmetic and how to build an ALU (Chapter 4)
• Constructing a processor to execute our instructions (Chapter 5)
• Pipelining to improve performance (Chapter 6)
• Memory: caches and virtual memory (Chapter 7)
• I/O (Chapter 8)

Key to a good grade: attending classes, reading the book!

13

Historical Perspective

• 1642 Pascal: Mechanical Comuter
• 1671: Gottfried Leibniz ADD/SUB/MUL/DIV
• 1801: Automatic Control of Weaving Process
• 1827 The Difference Engine by Charles Babbage
• 1936: Zuse Z1: electromechanical computers
• 1941: Zuse Z2
• 1943: Zuse Z3
• 1944: Aiken: Ark 1 at Harvard
• 1942-45: ABC at Iowa State (Attanasoff-Berry Computer)
• 1946: ENIAC: Eckert and Mauchley: Vacuum Tube
• 1945 EDVAC by von-Neumann machine, father of modern computing

14

Difference Engine

• Based on computing differences, a finite n-th order polynomial can
be differentiated n times, which can be represented by a difference

• For example
• y = Sin (x) = x – x3/3!
• To compute value of sin(x) at x0, x1, x2, x3, x4, x5, x6…. such that

difference in two consecutive values is small, we can calculate y0,
y1, y2, and y3 by hand and call them ∆0y0, ∆0y1, ∆0y2, and ∆0y3

• Then first order difference is ∆1y0 = y1-y0; ∆1y1 = y2-y1; ∆1y2 = y3-y2;
• Second order difference is ∆2y0 = ∆1y1 - ∆1y0 = y2-2y1+y0; and so on
• Third order difference is ∆3y0 = ∆2y1 - ∆2y0 = y3-3y2+3y1-y0
� ∆4y0 = 0
• Using this we can recursively compute ∆3y1, ∆2y1, and ∆1y1, and ∆0y1
• And so on….

15

• Measure, Report, and Summarize
• Make intelligent choices
• See through the marketing hype
• Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?

Performance

16

Which of these airplanes has the best performance?

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

•How much faster is the Concorde compared to the 747?

•How much bigger is the 747 than the Douglas DC-8?

17

• Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must I wait for the database query?

• Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

• If we upgrade a machine with a new processor what do we increase?
If we add a new machine to the lab what do we increase?

Computer Performance: TIME, TIME, TIME

18

• Elapsed Time
– counts everything (disk and memory accesses, I/O , etc.)
– a useful number, but often not good for comparison purposes

• CPU time
– doesn't count I/O or time spent running other programs
– can be broken up into system time, and user time

• Our focus: user CPU time
– time spent executing the lines of code that are "in" our program

Execution Time

19

• For some program running on machine X,

PerformanceX = 1 / Execution timeX

• "X is n times faster than Y"

PerformanceX / PerformanceY = n

• Problem:
– machine A runs a program in 20 seconds
– machine B runs the same program in 25 seconds

Book's Definition of Performance

20

Clock Cycles

• Instead of reporting execution time in seconds, we often use cycles

• Clock “ticks” indicate when to start activities (one abstraction):

• cycle time = time between ticks = seconds per cycle
• clock rate (frequency) = cycles per second (1 Hz. = 1 cycle/sec)

A 200 Mhz. clock has a cycle time

time

seconds
program

=
cycles

program
×

seconds
cycle

1

200 ×106 ×109 = 5 nanoseconds

21

So, to improve performance (everything else being equal) you can either

________ the # of required cycles for a program, or

________ the clock cycle time or, said another way,

________ the clock rate.

How to Improve Performance

seconds
program

=
cycles

program
×

seconds
cycle

22

• Could assume that # of cycles = # of instructions

This assumption is incorrect,

different instructions take different amounts of time on different machines.

Why? hint: remember that these are machine instructions, not lines of C code

time

1s
t i

ns
tru

ct
io

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

How many cycles are required for a program?

23

• Multiplication takes more time than addition

• Floating point operations take longer than integer ones

• Accessing memory takes more time than accessing registers

• Important point: changing the cycle time often changes the number of
cycles required for various instructions (more later)

time

Different numbers of cycles for different instructions

24

• Our favorite program runs in 10 seconds on computer A, which has a
400 Mhz. clock. We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The designer can use
new (or perhaps more expensive) technology to substantially increase the
clock rate, but has informed us that this increase will affect the rest of the
CPU design, causing machine B to require 1.2 times as many clock cycles as
machine A for the same program. What clock rate should we tell the
designer to target?"

• Don't Panic, can easily work this out from basic principles

Example

