
A High-Performance Microarchitecture
with Hardware-Programmable Functional Units

Rahul Razdan"' and Michael D. Smith"
Harvard University, Cambridge, MA 021 38

+ Digital Equipment Corporation, Hudson, MA 0 1742

"

Abstract
This paper explores a novel way to incorporate hardware-program-
mable resources into a processor microarchitecture to improve the
performance of general-purpose applications. Through a coupling
of compile-time analysis routines and hardware synthesis tools, we
automatically configure a given set of the hardware-programmable
functional units (PFUs) and thus augment the base instruction set
architecture so that it better meets the instruction set needs of each
application. We refer to this new class of general-purpose comput-
ers as PRogrammable Instruction Set Computers (PRISC).
Although similar in concept, the PRISC approach differs from
dynamically programmable microcode because in PRISC we
define entirely-new primitive datapath operations. In this paper, we
concentrate on the microarchitectural design of the simplest form
of PRISC-a RISC microprocessor with a single PFU that only
evaluates combinational functions. We briefly discuss the operat-
ing system and the programming language compilation techniques
that are needed to successfully build PRISC and, we present per-
formance results from a proof-of-concept study. With the inclusion
of a single 32-bit-wide PFU whose hardware cost is less than that
of a 1 kilobyte SRAM, our study shows a 22% improvement in
processor performance on the SPECint92 benchmarks.

Keywords: programmable logic, general-purpose microarchitec-
tures, automatic instruction set design, compile-time optimization,
logic synthesis

1 Introduction
A number of studies have shown that the use of hardware-pro-
grammable logic, such as FPGAs, can improve application perfor-
mance by tailoring hardware paths to match the particular
characteristics of the individual application [4,5,6,17]. Overall, the
architectures in these studies only work well for special-purpose
domains such as logic simulation and large number multiplication.
TO effectively use hardware-programmable resources in general-
purpose environment, we must develop a new approach that is
cost-effective, automatic, and applicable to the vast majority of
applications.

grammable Instruction Set Computers (PRISC). To be cost effec-
tive, we implement PRISC on top of an existing high-performance
processor microarchitecture. For this paper, we use a RISC archi-
tecture as our base, though our PRISC techniques are equally

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
MICRO 27- 11/94 San Jose CA USA

Our architectural approach to achieve these goals is called PRO-

0 1994 ACM 0-89791-707-3/94/0011..$3.50

applicable to a CISC architecture. PRISC augments the conven-
tional set of RISC instructions with application-specific instruc-
tions that are implemented in hardware-programmable functional
units (PFUs). These PFUs are carefully added to the microarchi-
tecture so we maintain the benefits of high-performance RISC
techniques (e.g. fixed instruction formats) and we minimally
impact the processor's cycle time.

To generate these application-specific PFU instructions in an auto-
mated fashion, we have developed compilation routines that ana-
lyze the hardware complexity of individual instructions. Using this
information, the compiler interacts with sophisticated logic synthe-
sis programs to select sequences of instructions that will execute
faster if implemented in PFU hardware. Since the PFU instruction
generation process is driven by the specific computations found in
each application, our PRISC approach avoids the semantics gap
problems of CISC architectures [141. Furthermore, the complexity
of our approach is completely hidden from the user/programmer.

The most general computational model for a PFU is a multi-cycle
sequential state machine. Iterative hardware solutions for square-
root or transcendental function evaluation are good examples of
this class of PFU. The general model however introduces synchro-
nization complexities between the PFU and the other RISC func-
tional units. For this paper, we discuss a simpler model that
implements a combinational function of two inputs and one output.
The synthesis routines constrain the complexity of this combina-
tional function so that its delay is equal to the delay of the ALU
already in the processor datapath. With these two restrictions, a
PFU can use the same synchronization mechanisms as the other
RISC functional units. We refer to this first implementation of the
PRISC architecture as PRISC-1.

PRISC-1 was originally meant as a proof-of-concept vehicle that
would allow us to develop the basic PRISC compilation and syn-
thesis environment. To our surprise, the PRISC-1 microarchitec-
lure exhibited noticeable performance benefits not only on the
computer-aided design (CAD) applications in the SPECint92
benchmark suite, but on the other applications as well. Even
though a PFU is significantly slower than a highly-customized
RISC functional unit, we can automatically find opportunities to
use a PFU where a typical custom functional unit is not adequate.
Our PRISC environment makes the MIPS 1% rule work on a per
application basis [18].

The next section summarizes some work related to the use of pro-
grammable logic in processor design and the automatic generation
of instruction sets. Section 3 describes the microarchitecture of
PRISC-1, while Section 4 overviews our PRISC compilation envi-
ronment and hardware extraction techniques. Section 5 discusses
our performance modeling environment and the results obtained
from our proof-of-concept experiment. Finally, Section 6 presents
conclusions and describes our future work.

172

2 Related Work
High-level synthesis [101 and automated instruction set generation
[13,15,16] are active areas of research in the CAD community, and
although the recent work in these areas is relevant to our work,
each group is trying to solve slightly different problems. Unlike
the work in high-level synthesis which typically attempts to build
an application-specific processor automatically, our work adds
programmable logic to a general-purpose processor, and it relies
on the compiler and run-time system to dynamically reconfigure
the programmable logic for each application. Unlike the work in
automated instruction set design which systematically analyzes a
set of benchmark program to define an entirely-new instruction set
for a given microarchitecture, our work simply extends an existing
instruction set, and it explores microarchitectures that can effec-
tively adapt to as-yet-unseen applications. Overall, the key aspect
of our work is that we produce a complete system where compiler-
generated information is used to dynamically reconfigure a rela-
tively small amount of hardware-programmable logic on a per-
application basis. We organize this hardware-programmable logic
so that it augments the other high-performance techniques found in
today's microarchitectures and so that it interacts cleanly with the
functionality of today's operating systems.

In many ways, our work is similar to the earlier work in writable
microcode stores [1,20,24,29]--each technique dynamically aug-
ments the base instruction set with new application-specific
instructions to improve application performance. The writable
microcode approach creates new instructions by grouping together
primitive datapath operations. Performance improves if we can
reduce the instruction fetch requirements, use faster data storage,
or increase the overlap between operations. However, as Holmer
[16] points out, most of these benefits are already obtained by the
use of pipelining, multiple issue, and large register files in today's
architectures. Our work also creates new instructions by grouping
together individual operations in the base instruction set, but since
our approach optimizes hardware at a level lower than the existing
functional units, we can obtain performance benefits beyond those
captured by pipelining and multiple issue techniques. In effect, we
pipeline operations at a granularity that is smaller than the existing
cycle time. Additionally, only our work addresses the issues
involved in dynamically extending the instruction-set architecture
of a microprocessor that is used in a multitasking environment.

Previous work in the use of hardware-programmable logic for gen-
eral-purpose computing has been sparse. Iseli and Sanchez [171
propose a VLIW microarchitecture consisting solely of PFUs.
Their processor does not include custom VLSI functional units for
typical integer and floating-point operations. Because programma-
ble logic is significantly slower than a custom logic, their prolo-
type had a maximum clock frequency of 5 MHz. This 5 MHz clock
rate is significantly below the clock frequencies of today's RISC
microprocessors (typically over 60 MHz). In addition, Iseli and
Sanchez [I71 do not offer any techniques to compile programs
from a general-purpose language such as C to their totally pro-
grammable environment. Shortcomings such as these make this
type of an approach inappropriate for general-purpose micropro-
cessors.

report impressive speedups for a number of specific C routines
when run on their PRISM-1 prototype. Overall, there are a number
of shortcomings in their initial work that our work attempts to
overcome. In particular, their prototype compiler requires some
user interaction while our prototype compiler is fully automated,
they report performance results only for hardware-optimized rou-
tines while we report results for entire applications, and they add
programmable logic to a relatively-slow microprocessor (IO-MHz
M68010) while we experiment with fast cycle times (200 MHz).

In contrast with the sparse work in the general-purpose applica-
tions of programmable logic, there has been a great deal of
research on programmable-logic solutions which solve domain-
specific problems. This work was pioneered by the PAM group in
Paris [6]. Their system contains XILINX [3 I] programmable
boards on the I/O bus of a general-purpose workstation. Their
approach partitions the computation for a particular problem
between the XILINX boards and the workstation processor. The
PAM system has shown good results on over ten applications [7],
including long integer mulliplication [25] and RSA decryption
[26]. The SPLASH group from Brown University [4] has mim-
icked the PAM model and has been successful in solving problems
such as text searching, DNA comparison, and edge detection in
graphics applications. Unfortunately, these board-based methods
incur a high overhead for communicating between the host CPU
and the programmable logic board. This significant overhead lim-
its the applicability of this approach to a class of algorithms that
have a combination of high computational complexity and low
communication overhead.

3 PRISC-1 Microarchitecture
PRISC- 1 offers a relatively small amount of hardware-program-
mable resources-typically 1 0-times less than that found in exist-
ing board-level designs. As Figure 1 shows, we attach the
hardware-programmable resources directly to the CPU datapath in
the form of a PFU. In general, the implementation of a particular
function in a PFU is significantly slower' than the implementation
of the same function in a highly-customized functional unit. As
such, PFUs are added in parallel with the existing functional units
so that they augment (not replace or replicate) the existing datap-
ath functionality.

n Source Operand Buses

File
and

Bypass
Logic

4 Paddr
4 P d a t a pFu FU2

U Result Operand Bus

Figure 1: PRISC-1 datapath.

Athanas and Silverman [5] propose an instruction-set augmenta-
tion process with general-purpose computing goals that are similar
to ours. Like our approach, they describe a compilation process
that is coupled with logic synthesis steps. Their compilation pro-
cess converts entire C functions into programmable hardware. This
granularity is much larger than our approach which considers any
grouping of instructions as candidates for hardware synthesis. We

Even though PFUs offer few hardware-programmable resources,
these resources reside inside the CPU chip. This design decision
minimizes the communicaticin costs (bandwidth and latency) for
loading and accessing a PFU. In PRISC-1, PFU data communiea-
tion is handled just like any other functional unit; each PFU has

expect that our more general approach would find greater opportu-
nities for hardware synthesis. Even so, Athanas and Silverman [5] 1. For example, Lewis [19] reports a factor of three performance difference between

programmable circuits and mask-pro@,rammed (gate array) circuits.

171

two input ports where it accepts operands and a single output port
where it drives its results. Our hope is that with an efficient com-
munication mechanism, hardware-programmable logic will be
useful in a larger class of applications. Each PFU also contains two
programming ports; their operation is described in Section 3.2.

The next two subsections discuss the design for a PFU and the
extensions to the instruction set architecture needed to program
and use this PFU. Section 4 then describes the overall software
architecture for PRISC-1.

3.1 PFU design

The design of a PFU is an interesting, non-trivial hardware design
problem. For PRISC-1, the primary PFU design constraint is to
build a functional unit with a delay that fits within the evaluation
phase of our base CPU pipeline. Within this constraint, we must
choose a design that maximizes the number of “interesting” func-
tions that can be implemented by the PFU. A function is “interest-
ing” if we can evaluate it faster with the PFU than with the base
CPU instructions.

Figure 2 illustrates an example implementation of a PFU for com-
binational functions (i.e. for PRISC-1). This PFU is comprised of
alternating layers of two basic components: interconnection matri-
ces and logic evaluation units. Each possible interconnection point
in the interconnection matrix is implemented with a CMOS n-
channel transistor that is controlled by a memory cell2. By appro-
priately setting the value in the memory cell, we can connect or
disconnect the two lines. Each logic evaluation unit implements a
hardware truth table, called a Look-Up Table (LUT). A n-input,
1-output LUT consists of a multiplexer connected to 2’t memory
cells (one memory cell per truth table entry). Each memory cell in
a PFU is addressable, and in fact, all of the PFU memory cells can
be viewed as a large SRAM which is loaded by using the PFU’s
Paddr and Pdata ports. Programming a PFU to implement a partic-
ular function then consists of loading the appropriate values into
the interconnection matrix memory cells and the LUT memory
cells.

expfu
Inputs from operand buses

rs rt rd LPnum

Outputs to result bus

Figure2: An example of a symmetric, layered PFU. A
symmetric PFU implements the same amount of hardware
in each bit position.

Because both the interconnection matrix and the logic evaluation
units make prodigious use of memory cells, these memory cells

2. We use the SRAM-fuse technology of programmable logic as the basic fuse primi-
tive in our PFUs since these types of fuses are easy to reprogram.

dominate the layout cost of our PFU. We have found that a sym-
metric PFU with 3 alternating layers of interconnect and LUTs
requires 30,528 transistors for a 32-bit datapath (61,056 transistors
for a 64-bit datapath) where memory cells comprise over 90% of
these transistors [22]. Because of the predominance of memory
cells, the layout cost of a PFU tracks the layout cost of a SRAM. In
comparison, our 30,528-transistor PFU takes considerably less sil-
icon area than a l kilobyte SRAM (which requires approximately
50,000 transistors). Current microprocessors easily include over
16 kilobytes of SRAM cache [12], and many have translation
lookaside buffers (TLBs) which are larger than a PFU.

As we mentioned earlier, we constrain the latency of a PRISC-1
PFU so that the latency of PFU execution fits within the cycle time
of today’s high-speed microprocessors. It is straightforward to
determine the worst-case delay through the PFU design in
Figure 2, and thus by limiting the number of logic levels in our
PFU, we can easily bound its delay. Assuming that today’s deeply
pipelined processors tolerate approximately 15-20 levels of
2-input logic gates per clock cycle, a 3-layer PFU should fit com-
fortably within a 200 MHz cycle time [22].

The inclusion of a PFU within the datapath places some extra
capacitive loading on the operand buses and it increases the size of
the multiplexer that feeds the pipeline latchkegister at the end of
the pipeline evaluation phase. If the delay through the evaluation
phase defines the cycle time, then the inclusion of a PFU will
increase the cycle time slightly. For other designs where the cycle
time is defined by the cache access time or by the branch delay, we
can probably add a PFU without affecting the CPU cycle time.

3.2 Instruction Set Extensions

To program and operate PFUs, we define a single new user instruc-
tion, the Execute PFU (expfu) instruction. Figure 3 presents the
format of this instruction in MIPS [18] notation.

6 5 5 5 11

The 32-bit expjii instruction evaluates a boolean function of two
inputs and one output. The compilatiodsynthesis system assigns a
logical-PFU number to each boolean function that it extracts from
an application. The LPnum field in an expfu instruction specifies
the particular extracted function to execute; the 11 bits in the
LPnum field allow for a maximum of 2048 different PFU program-
ming configurations per appli~ation.~ As explained in Section 4,
the programming information for each logical-PFU function is part
of the data segment of the application’s object file. We use the log-
ical-PFU number to index into the data segment and find the
appropriate programming information.

Of course, if we had to program the PFU every time we used it, the
latency of a PFU operation would be much greater than the
expected value of a single cycle. Thus, we associate an 11-bit reg-
ister, the Pnum register, with each PFU. This Pnum register con-
tains the logical-PFU function currently programmed into the

3. Our current compilation system typically extracts fewer than 200 PFU functions
per application.

174

physical PFU. If the LPnum in the instruction matches the value in
the Pnum register, the expfu instruction executes normally (and in
a single cycle). If there is a mismatch however, an exception is
raised, and an exception handler loads the PFU with the correct
programming information. Our software is sophisticated enough to
determine when it is not beneficial to insert expfu instructions, e.g.
i t is usually a bad idea to insert two expfu instructions within a sin-
gle loop if the hardware contains only a single PFU resource.

The beauty of this approach lies in the fact that a PFU does not add
any extra process state that we would need to save on a context
switch. By reserving LPnum zero to represent an unprogrammed
PFU and by having the hardware4 clear the Pnum register on an
exception or system call, we are guaranteed to force a re-program-
ming of the PFU on its next use. Thus, similar to the handling of
TLBs and virtual caches without process ID tags, the cost of a con-
text switch should include a penalty for any PFUs that are re-pro-
grammed because of the context switch.

The latency of the expfu exception handler depends on the density
of the programming memory and the hardware resources allocated
for PFU programming. In practice, the PFU programming memory
is sparsely populated, typically less than 15% of the bits are
asserted. A scheme that relies on a hardware reset mechanism to
de-assert all of the PFU memory bits and then only programs the
asserted memory locations, would significantly reduce the overall
latency to program a PFU. Even if we use this optimization, we
still have a range of programming options with widely different
hardware and cycle count costs. A simple solution for PFU pro-
gramming might use implementation-specific Ioad/store instruc-
tions in a privileged routine (e.g. an ALPHA PAL routine [111) to
sequentially load the PFU programming memory. A higher perfor-
mance solution might rely on dedicated programming hardware in
combination with a high bandwidth path to memory. For example,
if we need to program 20% of the PFU memory bits, the expfu
exception handler latency under the PAL approach could'be as
high as 600 cycles, while the high-performance solution could
bring this latency below 100 cycles.

front-end processing

IocaVglobal optimization
code generation

4 PRISC-1 Compilation Techniques

instruction

Despite the fact that a PFU is not optimized for any particular
boolean function, a PFU can improve overall application perfor-
mance by evaluating several boolean functions with low haidware
complexity in a single cycle, These functions were not included as
instructions in the base instruction set because they did not provide
a significant performance gain across a wide variety of applica-
tions. Section 4.1 briefly presents the structure of our PRISC-1
compilation and hardware synthesis system that extracts these
application-specific functions and creates expfu instructions.
Section 4.2 then describes the key analysis step in our system that
keeps the compile time reasonable even though we aggressively
search for groups of instructions to implement in a PFU.
Section 4.3 presents our current routines for extracting expfu
instructions, and Section 4.4 discusses some additional techniques
that can improve the system effectiveness.

4.1 Software Architecture

Figure 4 shows the overall structure of a PRISC-1 compilation sys-
tem. The left side of this figure is similar to any high-level lan-
guage (HLL) compilation system. An application in a HLL is
parsed, optimized, and translated into target machine instructions;
these instructions are then assembled and scheduled to produce a
binary executable. Our compilation environment uses profile lnfor-

I

software

4. Alternatively, the operating system could selectively clear this bit if some system
calls did not use the PFU resources.

image

machine instructions

l, rP-+
hardware extraction hardware synthesis

instruction scheduling system

v ' I'
t r- linker

I t a.out

Figure 4: Major passes in a PRISC-1 compilation system.
Our hardware extraction routine sends sequences of
instructions to a hardware synthesis system which then
generates a corresponding PFU programming image. The
synthesis system also indicates to the extraction routine
whether the resulting image is larger than the physical PFU.

Unlike conventional compilers however, our PRISC-1 compiler
inserts a step after code generation, called hardware extraction,
that identifies sets of sequential instructions which we could poten-
tially implement with a PFU. Each instruction in an identified set is
mapped into boolean operations, and the entire group of boolean
operations is given to a hardware synthesis package. The logic
synthesis routines take the input combinational function and out-
put a netlist of LUTs. Durin,g this step, logic minimization algo-
rithms reduce the number of LUTs and interconnect resources that
are used by the input function. Finally, a placement and routing
routine is run to determine if the LUT netlist fits in the resources
offered by the physical PFU. The result of the place-and-route step
is fed back to the hardware extraction routines so that the compiler
can automatically reduce tbe input function if its requirements
exceed the physical PFU resource^.^
Once we have produced the appropriate hardware and software
images, all images are linked together in a straightforward manner.

5. A detailed d:scusskm of the a1gor:thms used for logic synthesk LUT &n~-zdon,
and LUT placement-and-route is beyo,nd the scope of this paper. Briefly, we have aug-
mented standard algorithms [8,9,30] tto the task of PFU synthesis. In general, the stan-
dard algorithms have a worst-case performance behavior which is exponenIia1, but
since our eztracted functions are combinational and quite small, the existing algo-
rithms, augmented with some simplifications, can quickly synthesize the input func-
tions.

175

The hardware images (the PFU programming information) simply
occupy part of the data segment of the resulting a.out. Razdan [223
describes a scheme for maintaining binary compatibility across a
family of PRISC machines.

Hardware extraction uses profile information to determine which
instructions are executed often enough to justify the expense of
programming the PFU. In actuality, this routine does not require
profile information for correct operation; without profile informa-
tion (as with most aggressive compile-time optimizations), the
hardware extraction routine is simply more conservative in its
selection of optimizations.

4.2 Function-Width Analysis

Even with our modifications to the hardware synthesis routines, it
is still relatively expensive to check if an instruction sequence will
fit in the physical PFU resources. Consequently, we developed an
analysis step, called function-width analysis, that quickly separates
instructions into two classes: those that may benefit from PFU con-
version and those that definitely will not. This analysis step is
based on the observation that a PFU is less efficient than a custom
functional unit, i.e. a PFU is unable to evaluate a dense boolean
function as fast as a custom functional unit. Since the density of a
boolean function is related to the number of literals (input vari-
ables) in the function, we can quickly eliminate any instruction
whose boolean function requires a large number of input literals.
For example, a bitwise AND requires only two input literals per
output bit and thus is an ideal candidate for implementation in a
PFU. Similarly, a byte-wide ADD requires at most 16 input literals
for the most-significant output bit and thus is another excellent
candidate. A word-wide (32-bit-wide) ADD, on the other hand, is
not a good candidate for implementation in a PFU. Even though a
byte-wide ADD and a full-word ADD have the same software
costs, they have vastly different hardware costs.

Our routine for function-width analysis performs an iterative algo-
rithm that is very similar to those used in dataflow calculations [2].
The algorithm uses a ternary algebra and goes as follows. The out-
put variable of each unmarked instruction is initialized to X for
every bit position. A combination of forward and backward tra-
versals is then made over the control flow graph to reduce the
number of X bits. Forward traversals evaluate each instruction and
check to see if the evaluation changes the output bit vector. For
example, an unsigned byte load zeros all but the lower 8 bits of the
result. Backward traversals indicate unnecessary bit calculations.
For example, if a variable was stored to memory using a byte store
instruction and this variable was not used elsewhere, the instruc-
tion that generated the store input need only generate the lowest 8
bits of information. The algorithm ends when no bits change dur-
ing an iteration. Given the bit values for all of the variables in the
application, we heuristically calculate the hardware complexity of
the individual instructions and mark every operation that can be
easily implemented in a PFU as PFU-LOGIC candidate. For a
RISC instruction set, typically only memory operations, floating-
point operations, wide adds, multiplies, divides, and variable-
length shifts are not marked as PFU-LOGIC.

4.3 Hardware Extraction

Once the compiler has marked all of the potential PFU-LOGIC
instructions in an application, it is ready to select sequences of
these instructions for conversion to expfu instructions. Though we
considered many different ways to select instruction sequences,
our current hardware extraction routine follows a simple bottom-
up greedy approach. Basically, this approach starts with a PFU-
LOGIC instruction and then walks backward (against the flow of
control in the control flow graph) as far as possible. The backward
walk terminates when the next instruction is not a PFU-LOGIC

instruction or when inclusion of the next instruction would pro-
duce a function requiring more than two source operands or more
than one result. If the corresponding boolean function for this max-
ima16 instruction sequence does not fit within the PFU resources,
our extraction routine simply prunes an instruction at a time from
the top (beginning) of the instruction sequence.

As a first example of the operation of our extraction routine,
Figure 5 illustrates two sample code sequences extracted automati-
cally from the espresso benchmark [28]. Each example is simply a
sequence of data-dependent PFU-LOGIC instructions that a PFU
can evaluate in a single cycle. If we were to code these same
sequences in MIPS R2000 instructions [IS], each sequence would
require multiple instructions and thus multiple cycles to execute.
For reference in the results section, we refer to this optimization as
a PFlJ-expression optimization.

U S UT

!I#
0x1

@

U S Ox0 UT Ox0

v
RD

Figure 5 : Examples of a PFU-expression optimization. A
PFU can evaluate either of these sequences of boolean
instructions in a single cycle.

A slightly less obvious type of data flow optimization involves the
conversion of table lookups (referred to as PFU-table-lookup).
Table lookups are used, for instance, when logic expressions
become too complex and too inefficient to evaluate directly with
the processor’s instruction set. If our extraction algorithm can rec-
ognize a constant array as a data structure that represents a truth
table, we can minimize the table and represent it in a functional
form that is evaluated efficiently by a PFU.7 For illustration,
Figure 6 shows a truth table, the MIPS R2000 code, and the PFU
logic required for the evaluation of a ternary NAND gate. The
MIPS RZ000 i n s t r u c t i o n set r e q u i r e s at least four instructions to
evaluate this or any other two-input ternary gate through table
lookup techniques. As the figure shows however, a PFU can easily
evaluate this ternary gate in a single cycle. In fact, a single 4-input

6. Our simple bottom-up greedy algorithm does not attempt to increase the size of an
instruction sequence by rearranging the order of instructions. An obvious next step
would be to integrate the hardware extraction routine with the instruction scheduling
routines.
7. Of course, as with any type of programmer-applied optimization, life would be
much easier if we did not have to undo their optimization to apply ours. Section 4.4
discusses other issues related to this topic.

176

LUT can evaluate any ternary 2-input gate. Razdan [22] describes
a number of other example PFU-table-lookup optimizations.

Truth table

A B

00 xx
01 00

01 x 1

01 1 x

10 00

10 01

10 10

10 11

11 00

11 x 1

11 1x

A I BO A0

0

i 3
@
L

00

00

10

10

00

10

01

11

00

11

11

=FU loaic

61 A I

R2000 code

sllrl, A, 2

orrl, B, r l

addrl, T, r l

IdbZ, O(r1)

B1 A I A0 BO

L I

z1 zo

Figure 6: Example of a PFU-table-lookup optimization. The
truth table evaluates a ternary NAND gate where 00 is an
illegal state, 01 is a logic zero, 10 is a logic one, and 11 is a
logic X. In the MIPS R2000 code, Tis the base address of a
fully-decoded table.

In addition to simple sequences of data-dependent PFU-LOGIC
instructions, our hardware extraction routine also recognizes
opportunities to optimize the control flow of an application. One
such opportunity is the PFU-predication optimization which trans-
forms an IF-THEN-ELSE-structured portion of a control flow
graph (CFG) into a set of boolean equations. In effect, this optimi-
zation provides support for a limited form of predicated execution

ware support for predicated execution). To apply this optimization,
the candidate portion of the CFG must adhere to the following
characteristics: there must be one and only one entry point into this
portion of the CFG; there must be one and only one exit point from

(see Mshlke et al. [Zl] for more information on hardware and soft-

the selected portion; every block excluding the entry and exit
block must contain only PFU-LOGIC instructions: and the
selected portion cannot contain any backward CFG edges (i.e.

Once we have met these constraints, the process of conversion pro-
ceeds in three basic steps: predicate assignment, boolean transfor-
mation, and boolean minimization. Assignment of predicates to
basic blocks is a well understood problem [3]. Once we have cal-
culated the basic block predicates, the compiler transforms the
individual PFU-LOGIC instructions in each basic block to include
the effects of the predicate. Given a basic block predicate P and an
assignment of the form Z = A op B where op is any of the PFU-
LOGIC operations, the boolean transformational rule is (expressed
with C-style logical operators):

loops).

= ((A OP B) & (P)") I (Zold & (!P)')
The variables Z,ld and Z,,,, are the values of the output variable
before the assignment andl immediately after the assignment
respectively. The ()" function takes a boolean bit and generates a
n-bit vector containing n copies of this bit. After transformation,
we can execute all of the operations independent of the actual con-
trol flow. Only those operations with an asserted predicate will
affect the value of the result. Figure 7 illustrates the result of a
PFU-predication optimization that translates an example code seg-
ment into a set of boolean equations.

Example C code

If (c == 'b') n = 8;

else if (c =:= 's') n = 16;

else if (c =:= 'w') n = 32;

else n = 0:

Boolean PFU eauations

n3 = ((z c5)(c6 ;T)) ((sa)(s cl))

n4 = ((c4 c5)(c6 77)) ((z s) (c O cl))

n5 = ((c4 c5)(c6 (7)) ((c2 s) (c O cl))

Figure 7: Example of a PFU-predication optimization. The
PFU output bits for n that are not shown are tied to logic 0.

The obvious benefit of the PIFU-predication optimization is that it
reduces the execution time of a portion of a CFG to a single cycle.
Another important benefit of this optimization is that it eliminates
conditional branches from the instruction stream, and conditional
branches are a major impediment to higher performance through
instruction scheduling. Unfortunately, IF-THEN-ELSE structures
that use non-PFU-LOGIC instructions or that have multiple exit
points cannot benefit from the PFU-predication optimization. Even
so, we are able to use PFUs in another way that is also beneficial in
reducing both execution time and the branch impediments to code
motion. This new technique, called the PFU-jump optimization,
attempts to convert a set of IF-THEN-ELSE statements into a
switch statement. This optimization is based on the observation
that a significant portion of a program's branches only branch a
short distance [14]. Thus a branch can be thought of as a sparse

177

boolean function-a PFU can evaluate the switch condition and
generate the appropriate target address.

In order to use the PFU-jump optimization, a subset of the CFG
must: have one and only one start basic block; contain only PFU-
LOGIC instructions for the conditional expressions; not contain
any backward edges (loops). Figure 8 shows an example of the
PFU-jump optimization from the massive-counts routine in the
espresso benchmark. Since the code uses load and store instruc-
tions (non-PFU-LOGIC instructions) while incrementing the array
locations in the IF bodies, we cannot use the PFU-predicate opti-
mization. The conditional evaluation however requires only PFU-
LOGIC instructions, and thus we can replace the three conditional
branches with a single dynamic jump whose target address is gen-
erated by an expfu instruction.8 Since there are Z3 different possi-
ble execution paths through the code in Figure 8, the compiler
optimizes for 8 different target instruction sequences.

Example C code

If (Val & 1) A[O]++;

Code after PFU optimization

7 ~~

expf u t 1 ,Val , rO, PFn u m
jr tl

if (Val & 2) A[1]++;

if (Val & 3) A[2]++;

Figure 8: Example of the PFU-jump optimization from the
espresso benchmark. The register t l is a temporary register
and r0 contains the integer value 0.

Figure8 also shows the possible negative ramifications of the
PFU-jump optimization. First, there is a significant increase in the
code size, and this increase may degrade instruction cache perfor-
mance. Second, this technique forces a premature evaluation of all
conditional expressions in the CFG graph. This premature evalua-
tion can degrade performance in CFGs where the shortest path is
executed with the highest probability (though this is tempered by
the fast evaluation of the switch condition by the PFU). We use
branch probability data to determine when a PFU-jump optimiza-
tion will most-likely improve performance.

The last significant restriction on the use of a PFU to optimize con-
trol flow is that neither of the previous two techniques can contain
a loop. However, both of these optimizations interact well with
loop unrolling techniques [141. Razdan [22] describes how we
extend a simple loop unrolling algorithm to take advantage of a
PEW resource (called the PFU-loop optimization).

8. To actually generate the target address in the expjii instruction requires our system
to function also as a link-time optimization; we cannot know the final target addresses
until that time.

4.4 Other Optimization Opportunities

The effectiveness of the PFU optimizations described in the previ-
ous subsection is limited by the compiler’s ability to determine the
precise functionality of a set of instructions. For example, the
function implemented by a truth-table lookup is easily converted
into a expfu instruction if the compiler is able to identify this pro-
grammer-applied optimization. Similarly, there are a number of
character manipulation and string-to-number conversion routines
in the C run-time library that could definitely benefit from a PFU
resource; however, the hand-tuning of these routines for individual
instruction set architectures has made it very difficult to recon-
struct automatically their logical intent. In general, we have found
that i t is possible to structure a wide variety of applications so that
they achieve dramatic increases in performance from a PFU
resource [23].

5 Performance Modeling and Results
A complete analysis of our PRISC-1 approach would involve the
detailed design of a PFU-augmented datapath and the development
of the full compilationkynthesis system described in Section 4.1.
Before investing heavily in these two activities, we constructed a
proof-of-concept system that gave us a rough first estimate the
potential performance benefit of a PRISC-1 computer. Section 5.1
describes our performance modeling environment while
Section 5.2 presents the results of our simulation study.

5.1 Performance Model

We base our proof-of-concept study on a mythical 200MHz MIPS
R2000 datapath that has been augmented with a single PRISC-1
PFU. The datapath microarchitecture and the PFU design match
the descriptions given in Section 3. In particular, the PFU is a sym-
metric, layered PFU designed to meet the requirements of a
200MHz cycle time (i.e. a 1994 technology).

Since we do not have any real hardware, we did not need to
develop a complete compilation environment. Our current soft-
ware system contains implementations of the hardware extraction
and function-width analysis algorithms described in Section 4, but
unlike the Section 4.1 description of our ideal compilation system,
the input to the current routines is a MIPS object file and the output
is a change in the cycle count of each object file basic block. Using
an object file as input does limit the effectiveness of our extraction
routines due to a lack of complete type information. For example,
our extraction routines can use a PFU to eliminate the need for
temporary registers in an expression evaluation, but if these tem-
porary registers have been spilled to main memory due to register
congestion in the original object file, our current algorithms cannot
optimize them away-resulting in pessimistic performance results.
Similarly, a lack of type information, such as the usage of an enu-
merated type, greatly limits the effectiveness of our function-width
analysis step and thus limits the number of candidate PFU-LOGIC
operations. Finally, to keep from duplicating existing compiler
functionality, our current software does not perform any compile-
time optimizations such as procedure inlining or instruction sched-
uling. These and other compile-time optimizations could increase
the applicability of our various PFU transformations.

As described in Section 4.1, we integrate our analysis and extrac-
tion system with routines for hardware synthesis. Again, since we
do not have any real hardware, we perform all of the hardware syn-
thesis except LUT placement and routing. To determine if the
extracted function will fit in the physical PFU resources, our sys-
tem implements the following simple rule: if the maximum depth
of the gate level network is less than 6 levels, the PFU function is
allowed to replace the software code. This estimate of PFU pro-
grammability can lead to optimistic results for 5-level networks

178

which could not fit in our PFU resources, and pessimistic results
for 6- or 7-level networks which could have fit into the physical
PFU.

Speedup 1.15 1.91 1.16 1.10 1.06 1.12

ble for us to know how often we really need to program a PFU.
Currently though, our software system adds only a single expfu
instruction per loop and only to loops without procedure calls; thus
we can easily assume a worst-case scenario for our performance
results. Specifically, we assume that a PFU takes 500 cycles to pro-
gram and that we must re-program each PFU every time we enter
its enclosing loop. In other words, we assume that the PFU is never
programmed correctly when we enter a loop containing an expfu
instruction.

Our proof-of-concept system models CPU performance only-
memory system penalties are ignored. Similarly, the profile data is
for the application execution only-operating system issues and
performance are ignored. Because of all of the previous limitations
(software and performance modeling), one should view the results
as a lower bound on potential decrease in application CPU cycles.

5.2 Performance Results

Since one of our original goals was to develop an approach that is
applicable to a wide variety of applications, we selected the
SPECint92 benchmark suite [28] as a first cut at a set of diverse
applications. We performed all of our experiments on a DECsta-
tion .5000/240 using the MIPS C compiler (V2.10). For each
benchmark, Table 1 lists the number of times we invoked each of
the hardware extraction optimizations. Our software system would
apply an individual optimization only if the profile information
indicated that the optimization would increase application perfor-
mance by at least 0.1%. The compilatiodsynthesis time for the
PFU optimizations was typically measured in a few single-digit
minutes. Table 2 lists the performance gain obtained on each of the
SPECint92 applications. We calculate the performance gain by
dividing the number of cycles taken before PFU optimization by
the number taken after PFU optimization. The benchmarks shown
in Tables 1 and 2 are compress (CPS), eqntott (EQN), espresso
(EXP), gcc (GCC), li (LI), and sc (SC).

Optimization CPS EQN EXP GCC LI SC

PFU-expression

PFU-table-lookup

PFU-predication

PFU-jump

PFU-loop

TOTAL

Our system found many iristances of the PFU-expression and
PFU-jump optimizations in four of the six benchmarks. The rela-
tively sparse number of PFU optimization instances found in and
low performance improvement of li is due to the large number of
short procedure calls in the interpreter loop. As Table 2 shows,
eqntott exhibits an excellent speedup even though it has very few
static PFU optimization instances. This significant speedup is due
to a single PFU optimization in the cmppt routine. This routine
accounts for over 85% of the application's cycles so any cycle
count decreases in this routine greatly reduce the overall cycle
count. The basic data type in cmppt is a 16-bit integer, and we have
seen a 213% improvement in performance by changing this data
type from short (16-bit integer) to char (8-bit integer)! The PPU-
table-lookup optimization was never invoked on any of these
benchmarks because constanf arrays are not declared as constant in
application source code. Unfortunately, modifying the application
source code with constant qualifiers did not improve this situation
because the MIPS C compiler does not retain the read-only nature
of constant information in lhe object file. Finally, it should be
noted that the number of PFUs generated by our current system
(less than 200 functions per application) does not even approach
the expfi instruction format limit of 2047 logical-PFU numbers.

For the SPECint92 benchmarks, the performance gain from a sin-
gle PFU seems significant in comparison with other general-pur-
pose architectural alternatives. For example, consider the addition
of more on-chip cache meimory. Many of today's commercial
microprocessors contain at least 8 kilobytes of on-chip instruction
and data cache [121. Doubling the size of the instruction cache (to
16 kilobytes) only decreases the average instruction cache miss
rate by an average of 2% for the SPECint92 benchmarks. Under
fairly optimistic conditions (i.e. a CPI of execution equal to 1.0
and a 25 cycle miss penalty), this doubling of the instruction cache
provides an average performance improvement of approximately
15%, but at a hardware cost which is eight times that of a PFU.9

9 0 48 13 4 12

0 0 0 0 0 0

0 1 0 13 0 0

10 0 47 103 0 3.5

0 3 0 4 0 0

19 4 95 133 4 47

6 Conclusions and Future Work
This paper has described a novel microarchitecture and compila-
tiodsynthesis system that automatically exploits hardware-pro-
grammable resources to improve the performance of general-
purpose applications. This paper also presented encouraging
results from a proof-of-concept experiment that has shown
respectable performance gains (22% on the SPECint92 benchmark
suite) with a very modest hardware investment (a single combina-
tional PFU). Based on these encouraging results, we have begun to
port our PRISC- 1 hardware extraction routines to a general-pur-
pose compiler, and in the future, we hope to develop a detailed
hardware model of a PRISC- 1 datapath.

With a more aggressive compilation environment, we will be able
to explore the impact of our techniques on superscalar processors.

9. On a program like eyntott, we get a large benefit from the addition of a PFU and
nearly no benefit from increasing the instruction cache. At the other end of the spec-
trum, a program like gcc gets a large benefit from doubling the instruction cache, hut
currently only a small benefit from our PFU. Still in this case, we found that the bene-
fits are fairly equivalent when we added only 1KB of instruction cache.

I 70

Our PFU optimizations often reduce register pressure (by eliminat-
ing temporary variables), increase the size of basic blocks, or elim-
inate conditional branches (through predication). All of these side
effects have the potential to improve benefit of a superscalar
design. Furthermore, we foresee excellent opportunities for syner-
gistic interactions between our hardware extraction algorithms and
existing global instruction scheduling algorithms.

7 Acknowledgments
During the research, the assistance of four individuals was invalu-
able. We would like to thank Bill Grundman for his insightful dis-
cussions on custom CMOS implementation techniques and the
ramification of these techniques on PFU microarchitecture design.
Also, we would like to thank Mark Firstenberg and Ed McLellan
for the detailed information they provided on the microarchitec-
tures of two recent high performance VAX and ALPHA architec-
ture implementations. Finally, Steven Morris suggested the PAL
approach for programming the PFU.

Digital Equipment Corporation provided funding for Rahul
Razdan’s graduate work. Mike Smith was funded in part by a NSF
Young Investigator Award.

8 References
[I] A. Abd-alla and D. Karlgaard. Heuristic Synthesis of Micro-

programmed Computer Architecture. IEEE Transactions on
Computers, C-23(8):802-807, Aug. 1974.

121 A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-
niques, and Tools, Addison-Wesley, 1986.

[3] J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conver-
sion of control dependence to data dependence. Proc. 10th
ACM Symp. on Principles of Programming Languages, Jan.
1983.

[4] J. Arnold et al. The Splash 2 Processor and Applications.
Proc. Int. Con$ on Computer Design, Oct. 1993.

[51 P. Athanas and H. Silverman. Processor Reconfiguration
Through Instruction-set Metamorphosis. IEEE Computer,
26(3):11-18, Mar. 1993.

[6] P. Bertin, D. Roncin, and J. Vuillemin. Introduction to Pro-
grammable Active Memories. Systolic Array Processors, J.
McCanny et al. eds.. Prentice Hall, 1989.

171 P. Bertin, D. Roncin, and J. Vuillemin. Programmable Active
Memories: A Performance Assessment. Lecture Notes in
Computer Science, Springer Verlag, Parallel Architectures
and Their EfJicient Use, Paderborn 678: 119- 130, Nov. 1992.

[81 R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.
Wang. MIS: a Multiple-Level Logic Optimization System.
IEEE Transactions on CAD, CAD-6(6):1062-1081, Nov.
1987.

[9] S . Brown et al. Field-Programmable Gate Arrays, Kluwer
Academic Pub. 1992.

[lo] R. Camposano and W. Wolf, editors. High-Level VLSISynthe-
sis, Kluwer Academic Publishers, 1991.

[111 Digital Equipment Corp. Alpha Architecture Handbook,
1992.

[12] D. Dobberpuhl et al. A 200-MHz 64-bit Dual-issue CMOS
Microprocessor. Proc. Int. Solid State Circuits ConJ, Feb.
1992.

[131 F. Haney. Using a Computer to Design Computer Instruction
Sets. Ph.D. thesis, Carnegie-Mellon Univ., Pittsburgh, PA,
1968.

[14] J. Hennessy and D, Patterson. Computer Architecture: A
Quantitative Approach, Morgan Kaufman, 1990.

[15] B. Holmer and A. Despain. Viewing Instruction Set Design as
an Optimization Problem. Proc. of 24th Int. Symp. on
Microarchitecture, Nov. 1991.

[161 B. Holmer. Automatic Design of Computer Instruction Sets.

[17] C. Iseli and E. Sanchez. Beyond Superscalar Using FPGAs.

[181 G. Kane. MIPS RISC Architecture, Prentice-Hall, 1989.

[19] D. Lewis, M. van Ierseel, and D. Wong. A Field Programma-
ble Accelerator for Compiled-Code Applications. Proc. Int.
Con$ on Computer Design, Oct. 1993.

[20] P. Liu and E Mowle. Techniques of Program Execution with
a Writable Control Memory. IEEE Transactions on Comput-
ers, C-27(9):816-827, Sept. 1978.

[21] S . Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann.
Effective Compiler Support for Predicated Execution Using
the Hyperblock. Proc. 25th Annual Intl. Symp. on Microar-
chitecture, Dec. 1992.

[22] R. Razdan. PRISC: Programmable Reduced Instruction Set
Computers. Ph.D. thesis, Harvard University, Cambridge,
MA, 1994. Also available as Center for Research in Comput-
ing Technology Tech. Rep. TR-14-94, Div. of Applied Sci-
ences, Harvard Univ., Jun. 1994.

[23] R. Razdan, K. Brace, and M. Smith. PRISC Software Accel-
eration Techniques. Proc. Int. Con$ on Computer Design,
Oct. 1994.

[24] T. Rauscher and A. Agrawala. Dynamic Problem-oriented
Redefinition of Computer Architecture via Microprogram-
ming. IEEE Transactions on Computers, C-27(1 I): 1006-
1014, Nov. 1978.

[25] M. Shand, P. Bertin, and J. Vuillemin. Hardware Speedups in
Long Integer Multiplication. Computer Architecture News,
19(1):106, Jan. 1991.

[26] M. Shand and J. Vuillemin. Fast Implementation of RSA
Cryptography. Proc. 11th Symp. on Computer Arithmetic,
1993.

[27] M. Smith. Tracing with pixie. Computer Systems Lab. Tech.
Rep. CSL-TR-91-497, Stanford Univ., Nov. 1991.

[28] Standard Performance Evaluation Corporation (SPEC) News-
letter, Volume 4, Issue 1, Mar. 1992.

[29] J. Stockenberg and A. van Dam. Vertical Migration for Per-
formance Enhancement in Layered Hardware/Firmware/Soft-
ware Systems. Computer, 11(5):35-50, May 1978.

[30] Thomas et al. Algorithmic and Register-Transfer Level Syn-
thesis: The System ArchitectS Workbench, Kluwer Academic
Pub., 1990.

Ph.D. thesis, U. of California, Berkeley, CA, 1993.

Proc. Int. Con& on Computer Design, Oct. 1993.

[31] Xilinx Corporation. Programmable Gate Array Book, 1989.

180

