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Abstract 
This paper explores a novel way to incorporate hardware-program- 
mable resources into a processor microarchitecture to improve the 
performance of general-purpose applications. Through a coupling 
of compile-time analysis routines and hardware synthesis tools, we 
automatically configure a given set of the hardware-programmable 
functional units (PFUs) and thus augment the base instruction set 
architecture so that it better meets the instruction set needs of each 
application. We refer to this new class of general-purpose comput- 
ers as PRogrammable Instruction Set Computers (PRISC). 
Although similar in concept, the PRISC approach differs from 
dynamically programmable microcode because in PRISC we 
define entirely-new primitive datapath operations. In this paper, we 
concentrate on the microarchitectural design of the simplest form 
of PRISC-a RISC microprocessor with a single PFU that only 
evaluates combinational functions. We briefly discuss the operat- 
ing system and the programming language compilation techniques 
that are needed to successfully build PRISC and, we present per- 
formance results from a proof-of-concept study. With the inclusion 
of a single 32-bit-wide PFU whose hardware cost is less than that 
of a 1 kilobyte SRAM, our study shows a 22% improvement in 
processor performance on the SPECint92 benchmarks. 

Keywords: programmable logic, general-purpose microarchitec- 
tures, automatic instruction set design, compile-time optimization, 
logic synthesis 

1 Introduction 
A number of studies have shown that the use of hardware-pro- 
grammable logic, such as FPGAs, can improve application perfor- 
mance by tailoring hardware paths to match the particular 
characteristics of the individual application [4,5,6,17]. Overall, the 
architectures in these studies only work well for special-purpose 
domains such as logic simulation and large number multiplication. 
TO effectively use hardware-programmable resources in general- 
purpose environment, we must develop a new approach that is 
cost-effective, automatic, and applicable to the vast majority of 
applications. 

grammable Instruction Set Computers (PRISC). To be cost effec- 
tive, we implement PRISC on top of an existing high-performance 
processor microarchitecture. For this paper, we use a RISC archi- 
tecture as our base, though our PRISC techniques are equally 
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Our architectural approach to achieve these goals is called PRO- 
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applicable to a CISC architecture. PRISC augments the conven- 
tional set of RISC instructions with application-specific instruc- 
tions that are implemented in hardware-programmable functional 
units (PFUs). These PFUs are carefully added to the microarchi- 
tecture so we maintain the benefits of high-performance RISC 
techniques (e.g. fixed instruction formats) and we minimally 
impact the processor's cycle time. 

To generate these application-specific PFU instructions in an auto- 
mated fashion, we have developed compilation routines that ana- 
lyze the hardware complexity of individual instructions. Using this 
information, the compiler interacts with sophisticated logic synthe- 
sis programs to select sequences of instructions that will execute 
faster if implemented in PFU hardware. Since the PFU instruction 
generation process is driven by the specific computations found in 
each application, our PRISC approach avoids the semantics gap 
problems of CISC architectures [ 141. Furthermore, the complexity 
of our approach is completely hidden from the user/programmer. 

The most general computational model for a PFU is a multi-cycle 
sequential state machine. Iterative hardware solutions for square- 
root or transcendental function evaluation are good examples of 
this class of PFU. The general model however introduces synchro- 
nization complexities between the PFU and the other RISC func- 
tional units. For this paper, we discuss a simpler model that 
implements a combinational function of two inputs and one output. 
The synthesis routines constrain the complexity of this combina- 
tional function so that its delay is equal to the delay of the ALU 
already in the processor datapath. With these two restrictions, a 
PFU can use the same synchronization mechanisms as the other 
RISC functional units. We refer to this first implementation of the 
PRISC architecture as PRISC-1. 

PRISC-1 was originally meant as a proof-of-concept vehicle that 
would allow us to develop the basic PRISC compilation and syn- 
thesis environment. To our surprise, the PRISC-1 microarchitec- 
lure exhibited noticeable performance benefits not only on the 
computer-aided design (CAD) applications in the SPECint92 
benchmark suite, but on the other applications as well. Even 
though a PFU is significantly slower than a highly-customized 
RISC functional unit, we can automatically find opportunities to 
use a PFU where a typical custom functional unit is not adequate. 
Our PRISC environment makes the MIPS 1% rule work on a per 
application basis [18]. 

The next section summarizes some work related to the use of pro- 
grammable logic in processor design and the automatic generation 
of instruction sets. Section 3 describes the microarchitecture of 
PRISC-1, while Section 4 overviews our PRISC compilation envi- 
ronment and hardware extraction techniques. Section 5 discusses 
our performance modeling environment and the results obtained 
from our proof-of-concept experiment. Finally, Section 6 presents 
conclusions and describes our future work. 
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2 Related Work 
High-level synthesis [ 101 and automated instruction set generation 
[13,15,16] are active areas of research in the CAD community, and 
although the recent work in these areas is relevant to our work, 
each group is trying to solve slightly different problems. Unlike 
the work in high-level synthesis which typically attempts to build 
an application-specific processor automatically, our work adds 
programmable logic to a general-purpose processor, and it relies 
on the compiler and run-time system to dynamically reconfigure 
the programmable logic for each application. Unlike the work in 
automated instruction set design which systematically analyzes a 
set of benchmark program to define an entirely-new instruction set 
for a given microarchitecture, our work simply extends an existing 
instruction set, and it explores microarchitectures that can effec- 
tively adapt to as-yet-unseen applications. Overall, the key aspect 
of our work is that we produce a complete system where compiler- 
generated information is used to dynamically reconfigure a rela- 
tively small amount of hardware-programmable logic on a per- 
application basis. We organize this hardware-programmable logic 
so that it augments the other high-performance techniques found in 
today's microarchitectures and so that it interacts cleanly with the 
functionality of today's operating systems. 

In many ways, our work is similar to the earlier work in writable 
microcode stores [ 1,20,24,29]--each technique dynamically aug- 
ments the base instruction set with new application-specific 
instructions to improve application performance. The writable 
microcode approach creates new instructions by grouping together 
primitive datapath operations. Performance improves if we can 
reduce the instruction fetch requirements, use faster data storage, 
or increase the overlap between operations. However, as Holmer 
[16] points out, most of these benefits are already obtained by the 
use of pipelining, multiple issue, and large register files in today's 
architectures. Our work also creates new instructions by grouping 
together individual operations in the base instruction set, but since 
our approach optimizes hardware at a level lower than the existing 
functional units, we can obtain performance benefits beyond those 
captured by pipelining and multiple issue techniques. In effect, we 
pipeline operations at a granularity that is smaller than the existing 
cycle time. Additionally, only our work addresses the issues 
involved in dynamically extending the instruction-set architecture 
of a microprocessor that is used in a multitasking environment. 

Previous work in the use of hardware-programmable logic for gen- 
eral-purpose computing has been sparse. Iseli and Sanchez [ 171 
propose a VLIW microarchitecture consisting solely of PFUs. 
Their processor does not include custom VLSI functional units for 
typical integer and floating-point operations. Because programma- 
ble logic is significantly slower than a custom logic, their prolo- 
type had a maximum clock frequency of 5 MHz. This 5 MHz clock 
rate is significantly below the clock frequencies of today's RISC 
microprocessors (typically over 60 MHz). In addition, Iseli and 
Sanchez [I71 do not offer any techniques to compile programs 
from a general-purpose language such as C to their totally pro- 
grammable environment. Shortcomings such as these make this 
type of an approach inappropriate for general-purpose micropro- 
cessors. 

report impressive speedups for a number of specific C routines 
when run on their PRISM-1 prototype. Overall, there are a number 
of shortcomings in their initial work that our work attempts to 
overcome. In particular, their prototype compiler requires some 
user interaction while our prototype compiler is fully automated, 
they report performance results only for hardware-optimized rou- 
tines while we report results for entire applications, and they add 
programmable logic to a relatively-slow microprocessor (IO-MHz 
M68010) while we experiment with fast cycle times (200 MHz). 

In contrast with the sparse work in the general-purpose applica- 
tions of programmable logic, there has been a great deal of 
research on programmable-logic solutions which solve domain- 
specific problems. This work was pioneered by the PAM group in 
Paris [6]. Their system contains XILINX [3 I ]  programmable 
boards on the I/O bus of a general-purpose workstation. Their 
approach partitions the computation for a particular problem 
between the XILINX boards and the workstation processor. The 
PAM system has shown good results on over ten applications [7], 
including long integer mulliplication [25] and RSA decryption 
[26]. The SPLASH group from Brown University [4] has mim- 
icked the PAM model and has been successful in solving problems 
such as text searching, DNA comparison, and edge detection in 
graphics applications. Unfortunately, these board-based methods 
incur a high overhead for communicating between the host CPU 
and the programmable logic board. This significant overhead lim- 
its the applicability of this approach to a class of algorithms that 
have a combination of high computational complexity and low 
communication overhead. 

3 PRISC-1 Microarchitecture 
PRISC- 1 offers a relatively small amount of hardware-program- 
mable resources-typically 1 0-times less than that found in exist- 
ing board-level designs. As Figure 1 shows, we attach the 
hardware-programmable resources directly to the CPU datapath in 
the form of a PFU. In general, the implementation of a particular 
function in a PFU is significantly slower' than the implementation 
of the same function in a highly-customized functional unit. As 
such, PFUs are added in parallel with the existing functional units 
so that they augment (not replace or replicate) the existing datap- 
ath functionality. 
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Figure 1: PRISC-1 datapath. 

Athanas and Silverman [5] propose an instruction-set augmenta- 
tion process with general-purpose computing goals that are similar 
to ours. Like our approach, they describe a compilation process 
that is coupled with logic synthesis steps. Their compilation pro- 
cess converts entire C functions into programmable hardware. This 
granularity is much larger than our approach which considers any 
grouping of instructions as candidates for hardware synthesis. We 

Even though PFUs offer few hardware-programmable resources, 
these resources reside inside the CPU chip. This design decision 
minimizes the communicaticin costs (bandwidth and latency) for 
loading and accessing a PFU. In PRISC-1, PFU data communiea- 
tion is handled just like any other functional unit; each PFU has 

expect that our more general approach would find greater opportu- 
nities for hardware synthesis. Even so, Athanas and Silverman [5] 1. For example, Lewis [19] reports a factor of three performance difference between 

programmable circuits and mask-pro@,rammed (gate array) circuits. 
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two input ports where it accepts operands and a single output port 
where it drives its results. Our hope is that with an efficient com- 
munication mechanism, hardware-programmable logic will be 
useful in a larger class of applications. Each PFU also contains two 
programming ports; their operation is described in Section 3.2. 

The next two subsections discuss the design for a PFU and the 
extensions to the instruction set architecture needed to program 
and use this PFU. Section 4 then describes the overall software 
architecture for PRISC-1. 

3.1 PFU design 

The design of a PFU is an interesting, non-trivial hardware design 
problem. For PRISC-1, the primary PFU design constraint is to 
build a functional unit with a delay that fits within the evaluation 
phase of our base CPU pipeline. Within this constraint, we must 
choose a design that maximizes the number of “interesting” func- 
tions that can be implemented by the PFU. A function is “interest- 
ing” if we can evaluate it faster with the PFU than with the base 
CPU instructions. 

Figure 2 illustrates an example implementation of a PFU for com- 
binational functions (i.e. for PRISC-1). This PFU is comprised of 
alternating layers of two basic components: interconnection matri- 
ces and logic evaluation units. Each possible interconnection point 
in the interconnection matrix is implemented with a CMOS n- 
channel transistor that is controlled by a memory cell2. By appro- 
priately setting the value in the memory cell, we can connect or 
disconnect the two lines. Each logic evaluation unit implements a 
hardware truth table, called a Look-Up Table (LUT). A n-input, 
1-output LUT consists of a multiplexer connected to 2’t memory 
cells (one memory cell per truth table entry). Each memory cell in 
a PFU is addressable, and in fact, all of the PFU memory cells can 
be viewed as a large SRAM which is loaded by using the PFU’s 
Paddr and Pdata ports. Programming a PFU to implement a partic- 
ular function then consists of loading the appropriate values into 
the interconnection matrix memory cells and the LUT memory 
cells. 

expfu 
Inputs from operand buses 

rs rt rd LPnum 

Outputs to result bus 

Figure2: An example of a symmetric, layered PFU. A 
symmetric PFU implements the same amount of hardware 
in each bit position. 

Because both the interconnection matrix and the logic evaluation 
units make prodigious use of memory cells, these memory cells 

2. We use the SRAM-fuse technology of programmable logic as the basic fuse primi- 
tive in our PFUs since these types of fuses are easy to reprogram. 

dominate the layout cost of our PFU. We have found that a sym- 
metric PFU with 3 alternating layers of interconnect and LUTs 
requires 30,528 transistors for a 32-bit datapath (61,056 transistors 
for a 64-bit datapath) where memory cells comprise over 90% of 
these transistors [22]. Because of the predominance of memory 
cells, the layout cost of a PFU tracks the layout cost of a SRAM. In 
comparison, our 30,528-transistor PFU takes considerably less sil- 
icon area than a l kilobyte SRAM (which requires approximately 
50,000 transistors). Current microprocessors easily include over 
16 kilobytes of SRAM cache [12], and many have translation 
lookaside buffers (TLBs) which are larger than a PFU. 

As we mentioned earlier, we constrain the latency of a PRISC-1 
PFU so that the latency of PFU execution fits within the cycle time 
of today’s high-speed microprocessors. It is straightforward to 
determine the worst-case delay through the PFU design in 
Figure 2, and thus by limiting the number of logic levels in our 
PFU, we can easily bound its delay. Assuming that today’s deeply 
pipelined processors tolerate approximately 15-20 levels of 
2-input logic gates per clock cycle, a 3-layer PFU should fit com- 
fortably within a 200 MHz cycle time [22]. 

The inclusion of a PFU within the datapath places some extra 
capacitive loading on the operand buses and it increases the size of 
the multiplexer that feeds the pipeline latchkegister at the end of 
the pipeline evaluation phase. If the delay through the evaluation 
phase defines the cycle time, then the inclusion of a PFU will 
increase the cycle time slightly. For other designs where the cycle 
time is defined by the cache access time or by the branch delay, we 
can probably add a PFU without affecting the CPU cycle time. 

3.2 Instruction Set Extensions 

To program and operate PFUs, we define a single new user instruc- 
tion, the Execute PFU (expfu) instruction. Figure 3 presents the 
format of this instruction in MIPS [18] notation. 

6 5 5 5 11 

The 32-bit expjii instruction evaluates a boolean function of two 
inputs and one output. The compilatiodsynthesis system assigns a 
logical-PFU number to each boolean function that it extracts from 
an application. The LPnum field in an expfu instruction specifies 
the particular extracted function to execute; the 11 bits in the 
LPnum field allow for a maximum of 2048 different PFU program- 
ming configurations per appli~ation.~ As explained in Section 4, 
the programming information for each logical-PFU function is part 
of the data segment of the application’s object file. We use the log- 
ical-PFU number to index into the data segment and find the 
appropriate programming information. 

Of course, if we had to program the PFU every time we used it, the 
latency of a PFU operation would be much greater than the 
expected value of a single cycle. Thus, we associate an 11-bit reg- 
ister, the Pnum register, with each PFU. This Pnum register con- 
tains the logical-PFU function currently programmed into the 

3. Our current compilation system typically extracts fewer than 200 PFU functions 
per application. 
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physical PFU. If the LPnum in the instruction matches the value in 
the Pnum register, the expfu instruction executes normally (and in 
a single cycle). If there is a mismatch however, an exception is 
raised, and an exception handler loads the PFU with the correct 
programming information. Our software is sophisticated enough to 
determine when it is not beneficial to insert expfu instructions, e.g. 
i t  is usually a bad idea to insert two expfu instructions within a sin- 
gle loop if the hardware contains only a single PFU resource. 

The beauty of this approach lies in the fact that a PFU does not add 
any extra process state that we would need to save on a context 
switch. By reserving LPnum zero to represent an unprogrammed 
PFU and by having the hardware4 clear the Pnum register on an 
exception or system call, we are guaranteed to force a re-program- 
ming of the PFU on its next use. Thus, similar to the handling of 
TLBs and virtual caches without process ID tags, the cost of a con- 
text switch should include a penalty for any PFUs that are re-pro- 
grammed because of the context switch. 

The latency of the expfu exception handler depends on the density 
of the programming memory and the hardware resources allocated 
for PFU programming. In practice, the PFU programming memory 
is sparsely populated, typically less than 15% of the bits are 
asserted. A scheme that relies on a hardware reset mechanism to 
de-assert all of the PFU memory bits and then only programs the 
asserted memory locations, would significantly reduce the overall 
latency to program a PFU. Even if we use this optimization, we 
still have a range of programming options with widely different 
hardware and cycle count costs. A simple solution for PFU pro- 
gramming might use implementation-specific Ioad/store instruc- 
tions in a privileged routine (e.g. an ALPHA PAL routine [ 111) to 
sequentially load the PFU programming memory. A higher perfor- 
mance solution might rely on dedicated programming hardware in 
combination with a high bandwidth path to memory. For example, 
if we need to program 20% of the PFU memory bits, the expfu 
exception handler latency under the PAL approach could'be as 
high as 600 cycles, while the high-performance solution could 
bring this latency below 100 cycles. 

front-end processing 

IocaVglobal optimization 
code generation 

4 PRISC-1 Compilation Techniques 

instruction 

Despite the fact that a PFU is not optimized for any particular 
boolean function, a PFU can improve overall application perfor- 
mance by evaluating several boolean functions with low haidware 
complexity in a single cycle, These functions were not included as 
instructions in the base instruction set because they did not provide 
a significant performance gain across a wide variety of applica- 
tions. Section 4.1 briefly presents the structure of our PRISC-1 
compilation and hardware synthesis system that extracts these 
application-specific functions and creates expfu instructions. 
Section 4.2 then describes the key analysis step in our system that 
keeps the compile time reasonable even though we aggressively 
search for groups of instructions to implement in a PFU. 
Section 4.3 presents our current routines for extracting expfu 
instructions, and Section 4.4 discusses some additional techniques 
that can improve the system effectiveness. 

4.1 Software Architecture 

Figure 4 shows the overall structure of a PRISC-1 compilation sys- 
tem. The left side of this figure is similar to any high-level lan- 
guage (HLL) compilation system. An application in a HLL is 
parsed, optimized, and translated into target machine instructions; 
these instructions are then assembled and scheduled to produce a 
binary executable. Our compilation environment uses profile lnfor- 

I 

software 

4. Alternatively, the operating system could selectively clear this bit if some system 
calls did not use the PFU resources. 

image 

machine instructions 

l, rP-+ 
hardware extraction hardware synthesis 

instruction scheduling system 

v ' I' 
t r- linker 

I t a.out 

Figure 4: Major passes in a PRISC-1 compilation system. 
Our hardware extraction routine sends sequences of 
instructions to a hardware synthesis system which then 
generates a corresponding PFU programming image. The 
synthesis system also indicates to the extraction routine 
whether the resulting image is larger than the physical PFU. 

Unlike conventional compilers however, our PRISC-1 compiler 
inserts a step after code generation, called hardware extraction, 
that identifies sets of sequential instructions which we could poten- 
tially implement with a PFU. Each instruction in an identified set is 
mapped into boolean operations, and the entire group of boolean 
operations is given to a hardware synthesis package. The logic 
synthesis routines take the input combinational function and out- 
put a netlist of LUTs. Durin,g this step, logic minimization algo- 
rithms reduce the number of LUTs and interconnect resources that 
are used by the input function. Finally, a placement and routing 
routine is run to determine if the LUT netlist fits in the resources 
offered by the physical PFU. The result of the place-and-route step 
is fed back to the hardware extraction routines so that the compiler 
can automatically reduce tbe input function if its requirements 
exceed the physical PFU  resource^.^ 
Once we have produced the appropriate hardware and software 
images, all images are linked together in a straightforward manner. 

5. A detailed d:scusskm of the a1gor:thms used for logic synthesk LUT &n~-zdon,  
and LUT placement-and-route is beyo,nd the scope of this paper. Briefly, we have aug- 
mented standard algorithms [8,9,30] tto the task of PFU synthesis. In general, the stan- 
dard algorithms have a worst-case performance behavior which is exponenIia1, but 
since our eztracted functions are combinational and quite small, the existing algo- 
rithms, augmented with some simplifications, can quickly synthesize the input func- 
tions. 
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The hardware images (the PFU programming information) simply 
occupy part of the data segment of the resulting a.out. Razdan [223 
describes a scheme for maintaining binary compatibility across a 
family of PRISC machines. 

Hardware extraction uses profile information to determine which 
instructions are executed often enough to justify the expense of 
programming the PFU. In actuality, this routine does not require 
profile information for correct operation; without profile informa- 
tion (as with most aggressive compile-time optimizations), the 
hardware extraction routine is simply more conservative in its 
selection of optimizations. 

4.2 Function-Width Analysis 

Even with our modifications to the hardware synthesis routines, it 
is still relatively expensive to check if an instruction sequence will 
fit in the physical PFU resources. Consequently, we developed an 
analysis step, called function-width analysis, that quickly separates 
instructions into two classes: those that may benefit from PFU con- 
version and those that definitely will not. This analysis step is 
based on the observation that a PFU is less efficient than a custom 
functional unit, i.e. a PFU is unable to evaluate a dense boolean 
function as fast as a custom functional unit. Since the density of a 
boolean function is related to the number of literals (input vari- 
ables) in the function, we can quickly eliminate any instruction 
whose boolean function requires a large number of input literals. 
For example, a bitwise AND requires only two input literals per 
output bit and thus is an ideal candidate for implementation in a 
PFU. Similarly, a byte-wide ADD requires at most 16 input literals 
for the most-significant output bit and thus is another excellent 
candidate. A word-wide (32-bit-wide) ADD, on the other hand, is 
not a good candidate for implementation in a PFU. Even though a 
byte-wide ADD and a full-word ADD have the same software 
costs, they have vastly different hardware costs. 

Our routine for function-width analysis performs an iterative algo- 
rithm that is very similar to those used in dataflow calculations [2]. 
The algorithm uses a ternary algebra and goes as follows. The out- 
put variable of each unmarked instruction is initialized to X for 
every bit position. A combination of forward and backward tra- 
versals is then made over the control flow graph to reduce the 
number of X bits. Forward traversals evaluate each instruction and 
check to see if the evaluation changes the output bit vector. For 
example, an unsigned byte load zeros all but the lower 8 bits of the 
result. Backward traversals indicate unnecessary bit calculations. 
For example, if a variable was stored to memory using a byte store 
instruction and this variable was not used elsewhere, the instruc- 
tion that generated the store input need only generate the lowest 8 
bits of information. The algorithm ends when no bits change dur- 
ing an iteration. Given the bit values for all of the variables in the 
application, we heuristically calculate the hardware complexity of 
the individual instructions and mark every operation that can be 
easily implemented in a PFU as PFU-LOGIC candidate. For a 
RISC instruction set, typically only memory operations, floating- 
point operations, wide adds, multiplies, divides, and variable- 
length shifts are not marked as PFU-LOGIC. 

4.3 Hardware Extraction 

Once the compiler has marked all of the potential PFU-LOGIC 
instructions in an application, it is ready to select sequences of 
these instructions for conversion to expfu instructions. Though we 
considered many different ways to select instruction sequences, 
our current hardware extraction routine follows a simple bottom- 
up greedy approach. Basically, this approach starts with a PFU- 
LOGIC instruction and then walks backward (against the flow of 
control in the control flow graph) as far as possible. The backward 
walk terminates when the next instruction is not a PFU-LOGIC 

instruction or when inclusion of the next instruction would pro- 
duce a function requiring more than two source operands or more 
than one result. If the corresponding boolean function for this max- 
ima16 instruction sequence does not fit within the PFU resources, 
our extraction routine simply prunes an instruction at a time from 
the top (beginning) of the instruction sequence. 

As a first example of the operation of our extraction routine, 
Figure 5 illustrates two sample code sequences extracted automati- 
cally from the espresso benchmark [28]. Each example is simply a 
sequence of data-dependent PFU-LOGIC instructions that a PFU 
can evaluate in a single cycle. If we were to code these same 
sequences in MIPS R2000 instructions [IS], each sequence would 
require multiple instructions and thus multiple cycles to execute. 
For reference in the results section, we refer to this optimization as 
a PFlJ-expression optimization. 

U S  UT 

!I# 
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Figure 5 :  Examples of a PFU-expression optimization. A 
PFU can evaluate either of these sequences of boolean 
instructions in a single cycle. 

A slightly less obvious type of data flow optimization involves the 
conversion of table lookups (referred to as PFU-table-lookup). 
Table lookups are used, for instance, when logic expressions 
become too complex and too inefficient to evaluate directly with 
the processor’s instruction set. If our extraction algorithm can rec- 
ognize a constant array as a data structure that represents a truth 
table, we can minimize the table and represent it in a functional 
form that is evaluated efficiently by a PFU.7 For illustration, 
Figure 6 shows a truth table, the MIPS R2000 code, and the PFU 
logic required for the evaluation of a ternary NAND gate. The 
MIPS RZ000 i n s t r u c t i o n  set r e q u i r e s  at least four instructions to 
evaluate this or any other two-input ternary gate through table 
lookup techniques. As the figure shows however, a PFU can easily 
evaluate this ternary gate in a single cycle. In fact, a single 4-input 

6. Our simple bottom-up greedy algorithm does not attempt to increase the size of an 
instruction sequence by rearranging the order of instructions. An obvious next step 
would be to integrate the hardware extraction routine with the instruction scheduling 
routines. 
7. Of course, as with any type of programmer-applied optimization, life would be 
much easier if we did not have to undo their optimization to apply ours. Section 4.4 
discusses other issues related to this topic. 
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LUT can evaluate any ternary 2-input gate. Razdan [22] describes 
a number of other example PFU-table-lookup optimizations. 
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Figure 6: Example of a PFU-table-lookup optimization. The 
truth table evaluates a ternary NAND gate where 00 is an 
illegal state, 01 is a logic zero, 10 is a logic one, and 11 is a 
logic X. In the MIPS R2000 code, Tis  the base address of a 
fully-decoded table. 

In addition to simple sequences of data-dependent PFU-LOGIC 
instructions, our hardware extraction routine also recognizes 
opportunities to optimize the control flow of an application. One 
such opportunity is the PFU-predication optimization which trans- 
forms an IF-THEN-ELSE-structured portion of a control flow 
graph (CFG) into a set of boolean equations. In effect, this optimi- 
zation provides support for a limited form of predicated execution 

ware support for predicated execution). To apply this optimization, 
the candidate portion of the CFG must adhere to the following 
characteristics: there must be one and only one entry point into this 
portion of the CFG; there must be one and only one exit point from 

(see Mshlke et al. [Zl] for more information on hardware and soft- 

the selected portion; every block excluding the entry and exit 
block must contain only PFU-LOGIC instructions: and the 
selected portion cannot contain any backward CFG edges (i.e. 

Once we have met these constraints, the process of conversion pro- 
ceeds in three basic steps: predicate assignment, boolean transfor- 
mation, and boolean minimization. Assignment of predicates to 
basic blocks is a well understood problem [3].  Once we have cal- 
culated the basic block predicates, the compiler transforms the 
individual PFU-LOGIC instructions in each basic block to include 
the effects of the predicate. Given a basic block predicate P and an 
assignment of the form Z = A op B where op  is any of the PFU- 
LOGIC operations, the boolean transformational rule is (expressed 
with C-style logical operators): 

loops). 

= ((A OP B )  & (P)") I (Zold & (!P)') 
The variables Z,ld and Z,,,, are the values of the output variable 
before the assignment andl immediately after the assignment 
respectively. The ()" function takes a boolean bit and generates a 
n-bit vector containing n copies of this bit. After transformation, 
we can execute all of the operations independent of the actual con- 
trol flow. Only those operations with an asserted predicate will 
affect the value of the result. Figure 7 illustrates the result of a 
PFU-predication optimization that translates an example code seg- 
ment into a set of boolean equations. 

Example C code 

If (c == 'b') n = 8; 

else if (c =:= 's') n = 16; 

else if (c =:= 'w') n = 32; 

else n = 0: 

Boolean PFU eauations 

n3 = ((z c5)(c6 ;T)) ((sa)(s cl)) 

n4 = ((c4 c5)(c6 77)) ((z s ) ( c O  cl))  

n5 = ((c4 c5)(c6 (7)) ((c2 s ) ( c O  cl)) 

Figure 7: Example of a PFU-predication optimization. The 
PFU output bits for n that are not shown are tied to logic 0. 

The obvious benefit of the PIFU-predication optimization is that it 
reduces the execution time of a portion of a CFG to a single cycle. 
Another important benefit of this optimization is that it eliminates 
conditional branches from the instruction stream, and conditional 
branches are a major impediment to higher performance through 
instruction scheduling. Unfortunately, IF-THEN-ELSE structures 
that use non-PFU-LOGIC instructions or that have multiple exit 
points cannot benefit from the PFU-predication optimization. Even 
so, we are able to use PFUs in another way that is also beneficial in 
reducing both execution time and the branch impediments to code 
motion. This new technique, called the PFU-jump optimization, 
attempts to convert a set of IF-THEN-ELSE statements into a 
switch statement. This optimization is based on the observation 
that a significant portion of a program's branches only branch a 
short distance [14]. Thus a branch can be thought of as a sparse 
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boolean function-a PFU can evaluate the switch condition and 
generate the appropriate target address. 

In order to use the PFU-jump optimization, a subset of the CFG 
must: have one and only one start basic block; contain only PFU- 
LOGIC instructions for the conditional expressions; not contain 
any backward edges (loops). Figure 8 shows an example of the 
PFU-jump optimization from the massive-counts routine in the 
espresso benchmark. Since the code uses load and store instruc- 
tions (non-PFU-LOGIC instructions) while incrementing the array 
locations in the IF bodies, we cannot use the PFU-predicate opti- 
mization. The conditional evaluation however requires only PFU- 
LOGIC instructions, and thus we can replace the three conditional 
branches with a single dynamic jump whose target address is gen- 
erated by an expfu instruction.8 Since there are Z3 different possi- 
ble execution paths through the code in Figure 8, the compiler 
optimizes for 8 different target instruction sequences. 

Example C code 

If (Val & 1) A[O]++; 

Code after PFU optimization 

7 ~~ 

expf u t 1 ,Val ,  rO, PFn u m 
jr tl 

if (Val & 2) A[ 1]++; 

if (Val & 3) A[2]++; 

Figure 8: Example of the PFU-jump optimization from the 
espresso benchmark. The register t l  is a temporary register 
and r0 contains the integer value 0. 

Figure8 also shows the possible negative ramifications of the 
PFU-jump optimization. First, there is a significant increase in the 
code size, and this increase may degrade instruction cache perfor- 
mance. Second, this technique forces a premature evaluation of  all 
conditional expressions in the CFG graph. This premature evalua- 
tion can degrade performance in CFGs where the shortest path is 
executed with the highest probability (though this is tempered by 
the fast evaluation of the switch condition by the PFU). We use 
branch probability data to determine when a PFU-jump optimiza- 
tion will most-likely improve performance. 

The last significant restriction on the use of a PFU to optimize con- 
trol flow is that neither of the previous two techniques can contain 
a loop. However, both of these optimizations interact well with 
loop unrolling techniques [ 141. Razdan [22] describes how we 
extend a simple loop unrolling algorithm to take advantage of a 
PEW resource (called the PFU-loop optimization). 

8. To actually generate the target address in the expjii instruction requires our system 
to function also as a link-time optimization; we cannot know the final target addresses 
until that time. 

4.4 Other Optimization Opportunities 

The effectiveness of the PFU optimizations described in the previ- 
ous subsection is limited by the compiler’s ability to determine the 
precise functionality of a set of instructions. For example, the 
function implemented by a truth-table lookup is easily converted 
into a expfu instruction if the compiler is able to identify this pro- 
grammer-applied optimization. Similarly, there are a number of 
character manipulation and string-to-number conversion routines 
in the C run-time library that could definitely benefit from a PFU 
resource; however, the hand-tuning of these routines for individual 
instruction set architectures has made it very difficult to recon- 
struct automatically their logical intent. In general, we have found 
that i t  is possible to structure a wide variety of applications so that 
they achieve dramatic increases in performance from a PFU 
resource [23]. 

5 Performance Modeling and Results 
A complete analysis of our PRISC-1 approach would involve the 
detailed design of a PFU-augmented datapath and the development 
of the full compilationkynthesis system described in Section 4.1. 
Before investing heavily in these two activities, we constructed a 
proof-of-concept system that gave us a rough first estimate the 
potential performance benefit of a PRISC-1 computer. Section 5.1 
describes our performance modeling environment while 
Section 5.2 presents the results of our simulation study. 

5.1 Performance Model 

We base our proof-of-concept study on a mythical 200MHz MIPS 
R2000 datapath that has been augmented with a single PRISC-1 
PFU. The datapath microarchitecture and the PFU design match 
the descriptions given in Section 3. In particular, the PFU is a sym- 
metric, layered PFU designed to meet the requirements of a 
200MHz cycle time (i.e. a 1994 technology). 

Since we do not have any real hardware, we did not need to 
develop a complete compilation environment. Our current soft- 
ware system contains implementations of the hardware extraction 
and function-width analysis algorithms described in Section 4, but 
unlike the Section 4.1 description of our ideal compilation system, 
the input to the current routines is a MIPS object file and the output 
is a change in the cycle count of each object file basic block. Using 
an object file as input does limit the effectiveness of our extraction 
routines due to a lack of complete type information. For example, 
our extraction routines can use a PFU to eliminate the need for 
temporary registers in an expression evaluation, but if these tem- 
porary registers have been spilled to main memory due to register 
congestion in the original object file, our current algorithms cannot 
optimize them away-resulting in pessimistic performance results. 
Similarly, a lack of type information, such as the usage of an enu- 
merated type, greatly limits the effectiveness of our function-width 
analysis step and thus limits the number of candidate PFU-LOGIC 
operations. Finally, to keep from duplicating existing compiler 
functionality, our current software does not perform any compile- 
time optimizations such as procedure inlining or instruction sched- 
uling. These and other compile-time optimizations could increase 
the applicability of our various PFU transformations. 

As described in Section 4.1, we integrate our analysis and extrac- 
tion system with routines for hardware synthesis. Again, since we 
do not have any real hardware, we perform all of the hardware syn- 
thesis except LUT placement and routing. To determine if the 
extracted function will fit in the physical PFU resources, our sys- 
tem implements the following simple rule: if the maximum depth 
of the gate level network is less than 6 levels, the PFU function is 
allowed to replace the software code. This estimate of PFU pro- 
grammability can lead to optimistic results for 5-level networks 

178 



which could not fit in our PFU resources, and pessimistic results 
for 6- or 7-level networks which could have fit into the physical 
PFU. 

Speedup 1.15 1.91 1.16 1.10 1.06 1.12 

ble for us to know how often we really need to program a PFU. 
Currently though, our software system adds only a single expfu 
instruction per loop and only to loops without procedure calls; thus 
we can easily assume a worst-case scenario for our performance 
results. Specifically, we assume that a PFU takes 500 cycles to pro- 
gram and that we must re-program each PFU every time we enter 
its enclosing loop. In other words, we assume that the PFU is never 
programmed correctly when we enter a loop containing an expfu 
instruction. 

Our proof-of-concept system models CPU performance only- 
memory system penalties are ignored. Similarly, the profile data is 
for the application execution only-operating system issues and 
performance are ignored. Because of all of the previous limitations 
(software and performance modeling), one should view the results 
as a lower bound on potential decrease in application CPU cycles. 

5.2 Performance Results 

Since one of our original goals was to develop an approach that is 
applicable to a wide variety of applications, we selected the 
SPECint92 benchmark suite [28] as a first cut at a set of diverse 
applications. We performed all of our experiments on a DECsta- 
tion .5000/240 using the MIPS C compiler (V2.10). For each 
benchmark, Table 1 lists the number of times we invoked each of 
the hardware extraction optimizations. Our software system would 
apply an individual optimization only if the profile information 
indicated that the optimization would increase application perfor- 
mance by at least 0.1%. The compilatiodsynthesis time for the 
PFU optimizations was typically measured in a few single-digit 
minutes. Table 2 lists the performance gain obtained on each of the 
SPECint92 applications. We calculate the performance gain by 
dividing the number of cycles taken before PFU optimization by 
the number taken after PFU optimization. The benchmarks shown 
in Tables 1 and 2 are compress (CPS), eqntott (EQN), espresso 
(EXP), gcc (GCC), li (LI), and sc (SC). 

Optimization CPS EQN EXP GCC LI SC 

PFU-expression 

PFU-table-lookup 

PFU-predication 

PFU-jump 

PFU-loop 

TOTAL 

Our system found many iristances of the PFU-expression and 
PFU-jump optimizations in four of the six benchmarks. The rela- 
tively sparse number of PFU optimization instances found in and 
low performance improvement of li  is due to the large number of 
short procedure calls in the interpreter loop. As Table 2 shows, 
eqntott exhibits an excellent speedup even though it has very few 
static PFU optimization instances. This significant speedup is due 
to a single PFU optimization in the cmppt routine. This routine 
accounts for over 85% of the application's cycles so any cycle 
count decreases in this routine greatly reduce the overall cycle 
count. The basic data type in cmppt is a 16-bit integer, and we have 
seen a 213% improvement in performance by changing this data 
type from short (16-bit integer) to char (8-bit integer)! The PPU- 
table-lookup optimization was never invoked on any of these 
benchmarks because constanf arrays are not declared as constant in 
application source code. Unfortunately, modifying the application 
source code with constant qualifiers did not improve this situation 
because the MIPS C compiler does not retain the read-only nature 
of constant information in lhe object file. Finally, it should be 
noted that the number of PFUs generated by our current system 
(less than 200 functions per application) does not even approach 
the expfi  instruction format limit of 2047 logical-PFU numbers. 

For the SPECint92 benchmarks, the performance gain from a sin- 
gle PFU seems significant in comparison with other general-pur- 
pose architectural alternatives. For example, consider the addition 
of more on-chip cache meimory. Many of today's commercial 
microprocessors contain at least 8 kilobytes of on-chip instruction 
and data cache [ 121. Doubling the size of the instruction cache (to 
16 kilobytes) only decreases the average instruction cache miss 
rate by an average of 2% for the SPECint92 benchmarks. Under 
fairly optimistic conditions (i.e. a CPI of execution equal to 1.0 
and a 25 cycle miss penalty), this doubling of the instruction cache 
provides an average performance improvement of approximately 
15%, but at a hardware cost which is eight times that of a PFU.9 

9 0 48 13 4 12 

0 0 0 0 0 0 

0 1 0 13 0 0 

10 0 47 103 0 3.5 

0 3 0 4 0 0  

19 4 95 133 4 47 

6 Conclusions and Future Work 
This paper has described a novel microarchitecture and compila- 
tiodsynthesis system that automatically exploits hardware-pro- 
grammable resources to improve the performance of general- 
purpose applications. This paper also presented encouraging 
results from a proof-of-concept experiment that has shown 
respectable performance gains (22% on the SPECint92 benchmark 
suite) with a very modest hardware investment (a single combina- 
tional PFU). Based on these encouraging results, we have begun to 
port our PRISC- 1 hardware extraction routines to a general-pur- 
pose compiler, and in the future, we hope to develop a detailed 
hardware model of a PRISC- 1 datapath. 

With a more aggressive compilation environment, we will be able 
to explore the impact of our techniques on superscalar processors. 

9. On a program like eyntott, we get a large benefit from the addition of a PFU and 
nearly no benefit from increasing the instruction cache. At the other end of the spec- 
trum, a program like gcc gets a large benefit from doubling the instruction cache, hut 
currently only a small benefit from our PFU. Still in this case, we found that the bene- 
fits are fairly equivalent when we added only 1KB of instruction cache. 
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Our PFU optimizations often reduce register pressure (by eliminat- 
ing temporary variables), increase the size of basic blocks, or elim- 
inate conditional branches (through predication). All of these side 
effects have the potential to improve benefit of a superscalar 
design. Furthermore, we foresee excellent opportunities for syner- 
gistic interactions between our hardware extraction algorithms and 
existing global instruction scheduling algorithms. 
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