Water and Wastewater Treatment

CE421/521 Environmental Biotechnology Tim Ellis October 12, 2006

Wastewater Treatment

- Three objectives of wastewater treatment:
 - reduce o <u>rank</u> matter (includes xenobiotic & recalcitrant organics, e.g. pharmaceuticals, hormones, etc.)
 - remove n<u>utrients</u> (N&P)
 - reduce pathogens

Categories of pollutants in wastewater

- Soluble and insoluble
- O rganic and inorganic
- Natural and synthetic
- Toxic and non-toxic
- Volatile and non-volatile
- Xenobiotic and b logenic
- Anthropogenic and naturally occurring

10,000 mg/L = 170

Dilute nature of pollutants

· Large v olume

200 mg/L 935 200 mg/L 300 & remove .02 % pollutut

- · C oncentrate
- · S ludge (biosolids) and liquid streams 99,987.47.
- Use b io chemical operations to treat both

Classification of biochemical operations

TO .	1 • 1	1 ,	, •
K ₁₀ C	hemical	l transforma	t_{100}
	nomica	uansivima	

_	removal of soluble
	Organic matter
	• a erobic treatment for soluble chemical oxygen demand (COD) in 50 - 40,000 mg/L range
	• a naとvobie treatment for high CODs (4000 - 50,000 」
	traditionally)
	• a free processes for CODs < 50 mg/L (e.g., carbon
	adsorption, ion exchange) and >50,000 mg/L (e.g., evaporation and
	incineration)
_	stabilization of insoluble organic matter
	• b i o so lids (sludge) removed by sedimentation
	• د مالغري matter not removed by sedimentation (entrapment in
	• collination (entrapment in biomass)
_	
_	biomass) conversion of soluble i norganic matter (N f P)
_	biomass) conversion of soluble i norganic matter (N f P) • enhanced biological phosphorus removal (EBPR)
-	biomass) conversion of soluble i norganic matter (N f P)

Biochemical Environment

```
t cominal
  e lectron
                              \overline{(TEA)}
  a cceptor
   - a erobiz
                          - oxygen
   - a naerobic
                            - CO<sub>2</sub> or
     organics
   - a noxic
                        - nitrate or sulfate
· e (0/054
                            of
  microorganisms
```


Bioreactor Configuration

· s uspended growth - continuously stirred tank reactors (CSTR) - CSTRs in s eries - plug flow · a Hachod growth -packed tower - trickling filter - rotating d (5 cs - e.g., rotating biological contactor (RBC) bed - e.g., anaerobic fluidized bed - flind 12ed reactor

Suspended Growth Bioreactors

Suspended Growth Systems

· Aerated Lagoons a biogas · Aerobic Digesters • Anaerobic Contact Anaerobic 🦪 · Uplow Sludge Blanket (UASB) Reactor • Static Granular Bed Reactor · A naevobic Digestion • Temperature Phased Anaerobic Digester

Attached Growth Bioreactors

- Fluidized B 2 d
 Reactors
 - A evobí
 - A naevobic
 - -A Mox(c)
- 2. Rotating Biological

 Contactors (RBC5)
- 3. Trickling Filter
- 4. A naerobie Filter

- Trickling Filter/S o lide Contact Process
- Activated Sludge/R othering Biological
 Contactor
- Integrated Fixed Film Activated Sludge | FAS
- Membrane Bioreactors

Completely Mixed A.S.

Boone wastewater treatment plant

Abu Dhabi WWTP

Abu Dhabi WWTP

