

Bioenergetics

- Thermodynamic considerations
 - Thermodynamic relationships govern whether a reaction can occur
 - Simply because a relationship is thermodynamically possible still may not occur
 - Could be activation energy required
 - Biochemical reactions require specific enzymes
 - Genetic potential required for production of specific enzymes

Gibbs Free Energy

$\Delta G = \Delta H - T \Delta S$

Where ΔG is the change in Gibbs free energy ΔH is the change in enthalpy and ΔS is the change in entropy for a closed system at constant pressure

For a reaction to proceed, the entropy of the system must increase, i.e., ΔG must be negative

- ΔG° for elements is zero
- Just because ∆G° is negative does not necessarily mean the reaction will proceed
- Relationship of ΔG° is valid for equilibrium conditions (says nothing about whether reaction will proceed)
- Thermodynamic equilibrium (nothing to say about rate of reaction – kinetics)

Oxidation Reduction

- Another measure of the energy contained in a compound is its oxidation state
 - Oxidation is the loss of electrons (often associated with dehydrogenation)
 - Reduction is the gain of electrons (often associated with hydrogenation)
- The carbon in CH_4 is completely reduced and has an oxidation state of -4
- The carbon in CO₂ is completely oxidized

Oxidation reduction reactions

- In biochemical reactions there are electron d_____ and electron a_____
- In general the electron donor is the energy source
- The electron acceptor is the last step in the electron transport system (ETS) the terminal electron acceptor

ThOD, COD, and BOD

Microbial Metabolism

Enzymes

- p_____ specific for a particular m_____ (substrate)
- c_____ of biochemical reactions, but do not get consumed in the reaction
- c_____ applications
 exist:

Enzymes Cont'd

- some non-p_____ molecules may be involved in enzyme catalyzed reactions:
 - co-factors or co-enzymes (e.g., nicotinamide adenine dinucleotide, NAD, NADH, also FAD, FADH)
 - may also act as e_____ carriers

- Six categories of enzymes:
 - 1. oxidoreductases: involved in o_____ reduction reactions
 - transferases: transfer of constituents from one c_____ to another
 - 3. hydrolases: responsible for h_____ of carbohydrates, proteins, and lipids
 - 4. lyases: catalyze the a_____ or removal of constituents
 - 5. isomerases: i_____ formation

ligases: join m_____ p formation

Kinetics

- Enzyme Kinetics enzymes are "catalysts" in biodegradation and metabolism
- $S + E \rightarrow ES \rightarrow P + E$
 - S = substrate
 - E = enzyme
 - ES = enzyme substrate complex

Michaelis - Menton

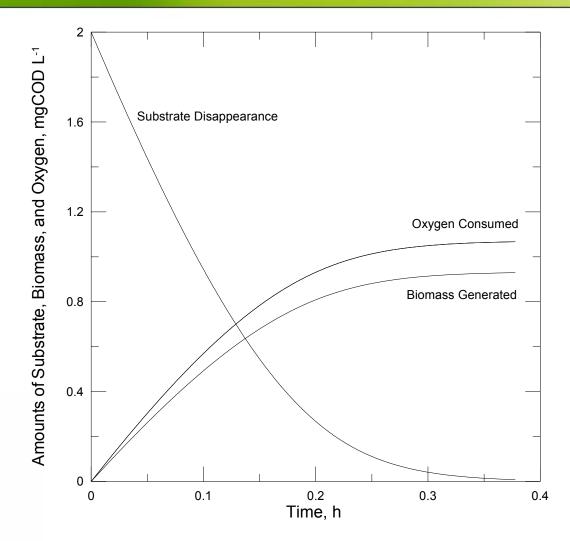
Michaelis - Menton

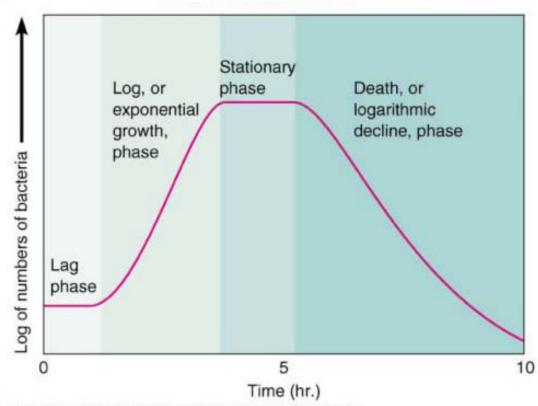
Michaelis-Menton vs Monod

Lineaweaver-Burke Example

Calculate v_{max} and K_m for the following data:

V, mol/L min	S, mol/L
0.00064	0.01
0.00058	0.008
0.000479	0.006
0.00038	0.004
0.000219	0.002


Lineaweaver-Burke Example


Microbial Growth Kinetics

- Procaryotic cells divide by b______ fission: simple c______ of DNA and cell division
- growth rate = increase in n_____ of microorganisms or increase in microbial m____
- time required for microbial population to d______ = generation time (doubling time) during unlimited growth conditions
- b_____ versus continuous culture
- growth curve:

Growth Curve

Growth Curve (log scale)

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

stationary phase, g_____ = decay
 death phase - how to distinguish bacterial d_____
 versus bacterial d_____

Continuous Culture

