CE 421/521 Environmental Biotechnology - Fall 2008 Biogeochemcial Cycles (C, N, P, & S) - composition of b____ cell (molar formula: C₅H₇O₂N with P 1/5 of the N requirement) - limiting nutrients are _____ and _____ FIGURE 14.1 The carbon cycle is dependent on autotrophic organisms that fix carbon dioxide into organic carbon and heterotrophic organisms that respire organic carbon to carbon dioxide. ## TABLE 14.1 Chemical Composition of an E. coli Cell | Elemental breakdown | % dry mass of an E. coli cell | | |--|---|--| | Elemental breakdown Major elements Carbon Oxygen Hydrogen Nitrogen Sulfur Phosphorus Minor elements Potassium Calcium Magnesium Chlorine Iron | % dry mass of an <i>E. coli</i> cell 50 20 8 14 1 3 2 0.05 0.05 0.05 0.2 | | | Trace elements Manganese Molybdenum Cobalt Copper Zinc | all trace elements
combined comprise 0.3%
of dry weight of cell | | Adapted from Neidhardt et al. (1990). **TABLE 14.3 Global Carbon Reservoirs** | Carbon reservoir | Metric tons carbon | Actively cycled | |----------------------------|----------------------|-----------------| | Atmosphere | | | | $\tilde{\text{CO}_2}$ | 6.7×10^{11} | Yes | | Ocean | | | | Biomass | 4.0×10^{9} | No | | Carbonates | 3.8×10^{13} | No | | Dissolved and | 2.1×10^{12} | Yes | | particulate organics | | | | Land | | | | Biota | 5.0×10^{11} | Yes | | Humus | 1.2×10^{12} | Yes | | Fossil fuel | 1.0×10^{13} | Yes | | Earth's crust ^a | 1.2×10^{17} | No | | | | | $[^]a$ This reservoir includes the entire lithosphere found in either terrestrial or ocean environments. (Data from Dobrovolsky, 1994.) # TABLE 14.4 Net Carbon Flux between Selected Carbon Reservoirs | Carbon source | Flux (metric tons carbon/year) | | |-----------------------------------|--------------------------------|--| | Release by fossil fuel combustion | 7×10^9 | | | Land clearing | 3×10^{9} | | | Forest harvest and decay | 6×10^9 | | | Forest regrowth | -4×10^9 | | | Net uptake by oceans (diffusion) | -3×10^{9} | | | Annual flux | 9 × 10 ⁹ | | | | | | FIGURE 14.2 Diagram of the efficiency of sunlight energy flow from primary producers to consumers. Table 14.6 Major Types of Organic Components of Plants | Plant component | % dry mass of plant | | |---------------------------|---------------------|--| | Cellulose | 1560 | | | Hemicellulose | 10-30 | | | Lignin | 5-30 | | | Protein and nucleic acids | 2–15 | | #### **NITROGEN** - Atmosphere is _____% nitrogen, yet nitrogen is considered a l_____ n___ - required in p TABLE 14.10 Global Nitrogen Reservoirs | | - | | |---|-------------------------|--------------------| | Nitrogen reservoir | Metric
tons nitrogen | Actively
cycled | | Atmosphere | | | | N_2 | 3.9×10^{15} | No | | Ocean | | | | Biomass | 5.2×10^{8} | Yes | | Dissolved and | | | | particulate organics | 3.0×10^{11} | Yes | | Soluble salts | | | | (NO ₃ ⁻ , NO ₂ ⁻ , NH ₄ ⁺) | 6.9×10^{11} | Yes | | Dissolved N ₂ | 2.0×10^{13} | No | | Land | | | | Biota | 2.5×10^{10} | Yes | | Organic matter | 1.1×10^{11} | Slow | | Earth's crust ^a | 7.7×10^{14} | No | | | | | ^a This reservoir includes the entire lithosphere found in either terrestrial or ocean environments. (Adapted from Dobrovolsky, 1994.) #### **Fixation** - metric tons/y compared to 2.5×10^{10} metric tons C/y - few others non-s Clostridia symbiotic -Rhizobium - requires Mg²⁺ & ATP (15 to 20 ATP/ N_2) Summary: N₂ fixation is energy intensive End product of N, fixation is ammonia N₃ fixation is inhibited by ammonia Nitrogenase is O₃ sensitive, some free-living N₃ fixers require reduced O tension - **Assimilation** $-NH_3(NH_4^+)$ preferred, will use NO_3^- but has to be reduced to NH₄⁺ - C/N ratio is approximately _____:1 for aerobes - C/N ratio is approximately ______:1 for anaerobes C/N ratio is approximately _____:1 for anaerobes in highly loaded (high rate) system - cell c_____ is characterized by the empirical formula: C H O N with the P requirement as _____ the N requirement (alternatively $C_{60}H_{87}O_{23}N_{12}P$) - in general cell composition is - 50% - 20% - 10-15% - 8-10% - 1-3% - 0.5-1.5% **Ammonification**: breakdown of o N to inorganic nitrogen Summary. Assimilation and ammonification cycles ammonia between its organic and inorganic forms between a redominates at C:N ratios > 20 Assimilation predominates at C:N ratios > 20 ammonification predominates at C:N ratios < 20 proteins: proteins amino acids Nitrification: two step process | TABLE 14.13 | Chemoautotrophic | |--------------------|------------------| | | ing Bacteria | | | | rating the dacteria | | |--------------------------------------|---|---|--| | 1. | | Genus | Species | | | | Ammonium oxidizers | | | | | Nitrosomonas | europaea
eutrophus
marina | | | | Nitrosococcus | nitrosus
mobilis
oceanus | | 2. | | Nitrosospira | briensis | | | | Nitrosolobus | multiformis | | | | Nitrosovibrio | tenuis | | | | Nitrite oxidizers
<i>Nitrobacter</i> | winogradskyi
hamburgensis
vulgaris | | | | Nitrospina | gracilis | | | | Nitrococcus | mobilis | | • requires
to NO ₃ - N | mg O ₂ /mg NH ₄ ⁺ -N converted | Nitrospira | marina | ## **Nitrification Kinetics** $$\mu = \frac{\mu_{\text{max}} S_{\textit{NH4}}}{K_{\textit{S}} + S_{\textit{NH4}}} \cdot \frac{S_{\textit{O2}}}{K_{\textit{O}} + S_{\textit{O2}}} \qquad \text{(double M____, pronounced muh nō')}$$ $$\mu_{\text{max}} = \text{maximum specific g}$$ rate, h⁻¹ $$\begin{array}{l} \text{where} \\ \mu_{\text{max}} = \text{maximum specific g} \\ K_{\text{S}} = \text{half s} \\ \text{Coefficient for ammonia, mg/L as NH}_{\text{4}}\text{-N} \\ K_{\text{O}} = \text{half saturation coefficient, mg/L as O}_{\text{2}} \\ \text{Yield} = \text{mg b} \\ \text{formed/mg a} \\ \text{utilized} \end{array}$$ $$K_0$$ = half saturation coefficient, mg/L as O_2 | | Nitrosomonas | | Nitrobacter | | |--------------------|---------------|------------------|--------------|------------------| | parameter | range | typical (@ 20°C) | range | typical (@ 20°C) | | μ_{max} | 0.014 - 0.092 | 0.032 | 0.006 - 0.06 | 0.034 | | K _S | 0.06 - 5.6 | 1.0 | 0.06 - 8.4 | 1.3 | | K_{o} | 0.3 - 1.3 | 0.5 | 0.3 - 1.3 | 0.68 | | Yield | 0.04 - 0.13 | 0.1 | 0.02 - 0.07 | 0.05 | Optimum pH for nitrifiers is around 8.0, range 7.5 - 8.5 (higher than for most other biological processes). Nitrifiers are sensitive to | • | d | 0 | |---|---|---| | _ | 4 | | • p___ $$\mu = \frac{\mu_{\text{max}} S_{NH4}}{K_S + S_{NH4}} \cdot \frac{K_I}{K_I + I}$$ where I = concentration of inhibitor, mg/L K_I = inhibition coeficient, mg/L ## **Effects of Temperature** derivation of the A_____ equation $k = Ae^{\frac{-\mu}{RT}}$ $$k_2 = k_1 \theta^{(T_2 - T_1)}$$ where $k_{1,2}$ = reaction rate coefficient at temperature $T_{1,2}$ θ = t ______ c ______- #### theta values | | Nitrosomonas | Nitrobacter | |-------------------|------------------------|------------------------| | $\mu_{max} \ K_S$ | 1.098 - 1.118
1.125 | 1.068 - 1.112
1.157 | | k_{d} | 1.029 - 1.104 | 1.029 - 1.104 | given the following measured data, calculate the theta value | T, °C | b, h ⁻¹ | |-------|--------------------| | 10 | 0.0037 | | 20 | 0.0095 | | 30 | 0.0229 | | 40 | 0.0372 | ## **DENITRIFICATION** 1. A _____ nitrate reduction: $NO_3^- \rightarrow NH_4^+$ nitrate is incorporated into cell material and reduced inside the cell 2. D______nitrate reduction (denitrification) NO₃ serves as the t_____e a____(TEA) in an anoxic (anaerobic) environment nitrate reductase nitrite r. nitric oxide r. $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$ summarized as: $NO_3^- \rightarrow NO_2^- \rightarrow N_2$ requires o_____ m____(example: methanol) $$\mu = \frac{\mu_{\text{max}} S}{K_S + S} \cdot \frac{NO_3^-}{K_{NO3} + NO_3^-}$$ calculate COD of methanol: calculate alkalinity: kinetics for denitrification similar to those for heterotrophic aerobic growth ## Nitrogen Removal in Wastewater Treatment Plants | Total
(mea | l Kjeldahl Nitrog
sured by digestin | gen (TKN) = ng sample with | = osulfuric acid to | n_ + a_ convert all nitrogen to ammonia) | |---------------|--|---|---------------------------|---| | • | | g/L in influent
t_
moval with bio | | pproximately 15% | | 3 Me | thods for Nitrog | en Removal | | | | 1. Biological | | | | | | | • d | | | ectron donor, nitrite is the TEA | | 2. | Chemical/Phy | | | | | | air s_breakion erever | spoint c | | | | | eerns for nitroger | | | | | 2. | D
E | of D0 | C | | | 4. | Nitrate in d_
oglobin to methe | | water – caus | ses methemoglobinemia (blue baby) oxidizes | | пети | ogiodin to metne | mogiodin | | | | PHO | SPHORUS | | | | | _ | 15% of population | on in US disch
harge contains | arges to 1approximately 7 | pproximately 1/5 the nitrogen requirement) - 10 mg/L as P | | Rem | oval of Phospho | orus | | | | 1. | Chemical pre | ecipitation: | | | | | a. tradit | tional p | | reactions | | | A1 ⁺³ + | PO ₄ -3 → | ♦ AlPO ₄ | | | | | PO ₄ -3 | | | | | h as s | | (magnesi | um ammonium phopshate MAP) | Mg^{+2} + NH_4^+ + PO_4^{-3} \rightarrow $Mg NH_4PO_4$ 2. Enhanced Biological Phosphorus Removal (EBPR) see handout ## **SULFUR** — inorganic: SO_4^{-2} S° H_2S $$SO_4^{-2}$$ — organic: $$R - O - SO_3^{-2}$$ — four key reactions: H₂S o_____ — can occur aerobically or anaerobically to elemental sulfur (S°) 1. a. a ______ : Thiobaccilus thioparus oxidizes S^{-2} to S° $$S^{\text{-}2} \quad + \quad {}^{\text{1}}\!\!/_{2} \, \, O_{2} \quad + \quad 2 \, H^{\text{+}} \qquad \Longrightarrow \qquad S^{\circ} \quad + \quad \, H_{2}O$$ b. a_____: — phototrophs use H₂S as electron donor — filamentous sulfur bacteria oxidize H₂S to S° in sulfur granules: Beggiatoa, Thiothrix Oxidation of E_____ Sulfur (Thiobacillus thiooxidans at 2. low pH) $$2S^{\circ} + 3O_2 + 2H_2O \rightarrow 2H_2SO_4$$ $$\rightarrow$$ 2 H₂SO₄ 3. A sulfate reduction: proteolytic bacteria breakdown organic matter containing sulfur (e.g. amino acids: methionine, cysteine, cystine) | TABLE 14.15 | Genera of Denitrifying Bacteria | |--------------------|--| | Genus | Interesting characteristics | | Organotrophs | | | Alcaligenes | Common soil bacterium | | Agrobacterium | Some species are plant pathogens | | Aquaspirillum | Some are magnetotactic, oligotrophic | | Azospirillum | Associative N2 fixer, fermentative | | Bacillus | Spore former, fermentative, some species
thermophilic | | Blastobacter | Budding bacterium, phylogenetically related to Rhizobium | | Bradyrhizobium | Symbiotic N ₂ fixer with legumes | | Branhamella | Animal pathogen | | Chromobacterium | Purple pigmentation | | Cytophaga | Gliding bacterium; cellulose degrader | | Flavobacterium | Common soil bacterium | | Flexihacter | Gliding bacterium | | Halobacterium | Halophilic | | Hyphomicrobium | Grows on one-C substrates, oligotrophic | | Kingella | Animal pathogen | | Neisseria | Animal pathogen | | Paracoccus | Halophilic, also lithotrophic | | Propionibacterium | Fermentative | | Pseudomonas | Commonly isolated from soil, very divers
genus | | Rhizobium | Symbiotic N ₂ fixer with legumes | | Wolinella | Animal pathogen | | Phototrophs | 1 0 | | Rhodopseudomonas | Anaerobic, sulfate reducer | | Lithotrophs | | | Alcaligenes | Uses H ₂ , also heterotrophic, common soil isolate | | Bradyrhizobium | Uses H ₂ , also heterotrophic, symbiotic N ₂
fixer with legumes | | Nitrosomonas | NH ₃ oxidizer | | Paracoccus | Uses H2, also heterotrophic, halophilic | | Pseudomonas | Uses H ₂ , also heterotrophic, common soil isolate | | Thiobacillus | S-oxidizer | | Thiomicrospira | S-oxidizer | | Thiosphaera | S-oxidizer, heterotrophic nitrifier, aerobic denitrification | $$SO_4^{-2}$$ + Organics \rightarrow S^{-2} + H_2O + CO_2 S^{-2} + $2H^+$ \rightarrow H_2S Desulvibrio and others Sulfate is used as a TEA & 1 m w organics serve as the electron donors | Low cell y | | |---|---| | — P
VFA) COD | _ of SRB depends on COD:S ratio, particularly readily degradable (e.g | | SRB compete with m ow COD:S favors SRB | for substrate: high COD:S favors methanogens | ## **Crown Sewer Corrosion** **FIGURE 15.3** Cross section showing microbial involvement in the corrosion of a concrete sewer pipe. (Adapted from Sydney *et al.*, 1996.)