CE 421/521 Environmental Biotechnology - Fall 2008

Biogeochemcial Cycles (C, N, P, & S)

- composition of b____ cell (molar formula: C₅H₇O₂N with P 1/5 of the N requirement)
- limiting nutrients are _____ and _____

FIGURE 14.1 The carbon cycle is dependent on autotrophic organisms that fix carbon dioxide into organic carbon and heterotrophic organisms that respire organic carbon to carbon dioxide.

TABLE 14.1 Chemical Composition of an E. coli Cell

Elemental breakdown	% dry mass of an E. coli cell	
Elemental breakdown Major elements Carbon Oxygen Hydrogen Nitrogen Sulfur Phosphorus Minor elements Potassium Calcium Magnesium Chlorine Iron	% dry mass of an <i>E. coli</i> cell 50 20 8 14 1 3 2 0.05 0.05 0.05 0.2	
Trace elements Manganese Molybdenum Cobalt Copper Zinc	all trace elements combined comprise 0.3% of dry weight of cell	

Adapted from Neidhardt et al. (1990).

TABLE 14.3 Global Carbon Reservoirs

Carbon reservoir	Metric tons carbon	Actively cycled
Atmosphere		
$\tilde{\text{CO}_2}$	6.7×10^{11}	Yes
Ocean		
Biomass	4.0×10^{9}	No
Carbonates	3.8×10^{13}	No
Dissolved and	2.1×10^{12}	Yes
particulate organics		
Land		
Biota	5.0×10^{11}	Yes
Humus	1.2×10^{12}	Yes
Fossil fuel	1.0×10^{13}	Yes
Earth's crust ^a	1.2×10^{17}	No

 $[^]a$ This reservoir includes the entire lithosphere found in either terrestrial or ocean environments. (Data from Dobrovolsky, 1994.)

TABLE 14.4 Net Carbon Flux between Selected Carbon Reservoirs

Carbon source	Flux (metric tons carbon/year)	
Release by fossil fuel combustion	7×10^9	
Land clearing	3×10^{9}	
Forest harvest and decay	6×10^9	
Forest regrowth	-4×10^9	
Net uptake by oceans (diffusion)	-3×10^{9}	
Annual flux	9 × 10 ⁹	

FIGURE 14.2 Diagram of the efficiency of sunlight energy flow from primary producers to consumers.

Table 14.6 Major Types of Organic Components of Plants

Plant component	% dry mass of plant	
Cellulose	1560	
Hemicellulose	10-30	
Lignin	5-30	
Protein and nucleic acids	2–15	

NITROGEN

- Atmosphere is _____% nitrogen, yet nitrogen is considered a l_____ n___
- required in p

TABLE 14.10 Global Nitrogen Reservoirs

	-	
Nitrogen reservoir	Metric tons nitrogen	Actively cycled
Atmosphere		
N_2	3.9×10^{15}	No
Ocean		
Biomass	5.2×10^{8}	Yes
Dissolved and		
particulate organics	3.0×10^{11}	Yes
Soluble salts		
(NO ₃ ⁻ , NO ₂ ⁻ , NH ₄ ⁺)	6.9×10^{11}	Yes
Dissolved N ₂	2.0×10^{13}	No
Land		
Biota	2.5×10^{10}	Yes
Organic matter	1.1×10^{11}	Slow
Earth's crust ^a	7.7×10^{14}	No

^a This reservoir includes the entire lithosphere found in either terrestrial or ocean environments. (Adapted from Dobrovolsky, 1994.)

Fixation

- metric tons/y compared to 2.5×10^{10} metric tons C/y
- few others non-s Clostridia symbiotic -Rhizobium
- requires Mg²⁺ & ATP (15 to 20 ATP/ N_2)

Summary: N₂ fixation is energy intensive End product of N, fixation is ammonia N₃ fixation is inhibited by ammonia Nitrogenase is O₃ sensitive, some free-living N₃ fixers require reduced O tension

- **Assimilation** $-NH_3(NH_4^+)$ preferred, will use NO_3^- but has to be reduced to NH₄⁺
- C/N ratio is approximately _____:1 for aerobes
- C/N ratio is approximately ______:1 for anaerobes
 C/N ratio is approximately _____:1 for anaerobes in highly loaded (high rate) system
- cell c_____ is characterized by the empirical formula: C H O N with the P requirement as _____ the N requirement (alternatively $C_{60}H_{87}O_{23}N_{12}P$)
- in general cell composition is
 - 50%
 - 20%
 - 10-15%
 - 8-10%
 - 1-3%
 - 0.5-1.5%

Ammonification: breakdown of o N to inorganic nitrogen

Summary.

Assimilation and ammonification cycles ammonia between its organic and inorganic forms

between a redominates at C:N ratios > 20 Assimilation predominates at C:N ratios > 20 ammonification predominates at C:N ratios < 20 proteins:

proteins

amino acids

Nitrification: two step process

TABLE 14.13	Chemoautotrophic
	ing Bacteria

		rating the dacteria	
1.		Genus	Species
		Ammonium oxidizers	
		Nitrosomonas	europaea eutrophus marina
		Nitrosococcus	nitrosus mobilis oceanus
2.		Nitrosospira	briensis
		Nitrosolobus	multiformis
		Nitrosovibrio	tenuis
		Nitrite oxidizers <i>Nitrobacter</i>	winogradskyi hamburgensis vulgaris
		Nitrospina	gracilis
		Nitrococcus	mobilis
• requires to NO ₃ - N	mg O ₂ /mg NH ₄ ⁺ -N converted	Nitrospira	marina

Nitrification Kinetics

$$\mu = \frac{\mu_{\text{max}} S_{\textit{NH4}}}{K_{\textit{S}} + S_{\textit{NH4}}} \cdot \frac{S_{\textit{O2}}}{K_{\textit{O}} + S_{\textit{O2}}} \qquad \text{(double M____, pronounced muh nō')}$$

$$\mu_{\text{max}} = \text{maximum specific g}$$
 rate, h⁻¹

$$\begin{array}{l} \text{where} \\ \mu_{\text{max}} = \text{maximum specific g} \\ K_{\text{S}} = \text{half s} \\ \text{Coefficient for ammonia, mg/L as NH}_{\text{4}}\text{-N} \\ K_{\text{O}} = \text{half saturation coefficient, mg/L as O}_{\text{2}} \\ \text{Yield} = \text{mg b} \\ \text{formed/mg a} \\ \text{utilized} \end{array}$$

$$K_0$$
 = half saturation coefficient, mg/L as O_2

	Nitrosomonas		Nitrobacter	
parameter	range	typical (@ 20°C)	range	typical (@ 20°C)
μ_{max}	0.014 - 0.092	0.032	0.006 - 0.06	0.034
K _S	0.06 - 5.6	1.0	0.06 - 8.4	1.3
K_{o}	0.3 - 1.3	0.5	0.3 - 1.3	0.68
Yield	0.04 - 0.13	0.1	0.02 - 0.07	0.05

Optimum pH for nitrifiers is around 8.0, range 7.5 - 8.5 (higher than for most other biological processes).

Nitrifiers are sensitive to

•	d	0
_	4	

• p___

$$\mu = \frac{\mu_{\text{max}} S_{NH4}}{K_S + S_{NH4}} \cdot \frac{K_I}{K_I + I}$$

where I = concentration of inhibitor, mg/L K_I = inhibition coeficient, mg/L

Effects of Temperature

derivation of the A_____ equation $k = Ae^{\frac{-\mu}{RT}}$

$$k_2 = k_1 \theta^{(T_2 - T_1)}$$

where $k_{1,2}$ = reaction rate coefficient at temperature $T_{1,2}$ θ = t ______ c ______-

theta values

	Nitrosomonas	Nitrobacter
$\mu_{max} \ K_S$	1.098 - 1.118 1.125	1.068 - 1.112 1.157
k_{d}	1.029 - 1.104	1.029 - 1.104

given the following measured data, calculate the theta value

T, °C	b, h ⁻¹
10	0.0037
20	0.0095
30	0.0229
40	0.0372

DENITRIFICATION

1. A _____ nitrate reduction: $NO_3^- \rightarrow NH_4^+$ nitrate is incorporated into cell material and reduced inside the cell

2. D______nitrate reduction (denitrification)

NO₃ serves as the t_____e a____(TEA) in an anoxic (anaerobic) environment

nitrate reductase nitrite r. nitric oxide r. $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$ summarized as: $NO_3^- \rightarrow NO_2^- \rightarrow N_2$

requires o_____ m____(example: methanol)

$$\mu = \frac{\mu_{\text{max}} S}{K_S + S} \cdot \frac{NO_3^-}{K_{NO3} + NO_3^-}$$
 calculate COD of methanol:

calculate alkalinity:

kinetics for denitrification similar to those for heterotrophic aerobic growth

Nitrogen Removal in Wastewater Treatment Plants

Total (mea	l Kjeldahl Nitrog sured by digestin	gen (TKN) = ng sample with	= osulfuric acid to	n_ + a_ convert all nitrogen to ammonia)
•		g/L in influent t_ moval with bio		pproximately 15%
3 Me	thods for Nitrog	en Removal		
1. Biological				
	• d			ectron donor, nitrite is the TEA
2.	Chemical/Phy			
	air s_breakion erever	spoint c		
	eerns for nitroger			
2.	D E	of D0	C	
4.	Nitrate in d_ oglobin to methe		water – caus	ses methemoglobinemia (blue baby) oxidizes
пети	ogiodin to metne	mogiodin		
PHO	SPHORUS			
_	15% of population	on in US disch harge contains	arges to 1approximately 7	pproximately 1/5 the nitrogen requirement) - 10 mg/L as P
Rem	oval of Phospho	orus		
1.	Chemical pre	ecipitation:		
	a. tradit	tional p		reactions
	A1 ⁺³ +	PO ₄ -3 →	♦ AlPO ₄	
		PO ₄ -3		
	h as s		(magnesi	um ammonium phopshate MAP)

 Mg^{+2} + NH_4^+ + PO_4^{-3} \rightarrow $Mg NH_4PO_4$

2. Enhanced Biological Phosphorus Removal (EBPR) see handout

SULFUR

— inorganic: SO_4^{-2} S° H_2S

$$SO_4^{-2}$$

— organic:
$$R - O - SO_3^{-2}$$

— four key reactions:

H₂S o_____ — can occur aerobically or anaerobically to elemental sulfur (S°) 1.

a. a ______ : Thiobaccilus thioparus oxidizes S^{-2} to S°

$$S^{\text{-}2} \quad + \quad {}^{\text{1}}\!\!/_{2} \, \, O_{2} \quad + \quad 2 \, H^{\text{+}} \qquad \Longrightarrow \qquad S^{\circ} \quad + \quad \, H_{2}O$$

b. a_____: — phototrophs use H₂S as electron donor

— filamentous sulfur bacteria oxidize H₂S to S° in sulfur granules: Beggiatoa, Thiothrix

Oxidation of E_____ Sulfur (Thiobacillus thiooxidans at 2. low pH)

$$2S^{\circ} + 3O_2 + 2H_2O \rightarrow 2H_2SO_4$$

$$\rightarrow$$
 2 H₂SO₄

3. A sulfate reduction: proteolytic bacteria breakdown organic matter containing sulfur (e.g. amino acids: methionine, cysteine, cystine)

TABLE 14.15	Genera of Denitrifying Bacteria
Genus	Interesting characteristics
Organotrophs	
Alcaligenes	Common soil bacterium
Agrobacterium	Some species are plant pathogens
Aquaspirillum	Some are magnetotactic, oligotrophic
Azospirillum	Associative N2 fixer, fermentative
Bacillus	Spore former, fermentative, some species thermophilic
Blastobacter	Budding bacterium, phylogenetically related to Rhizobium
Bradyrhizobium	Symbiotic N ₂ fixer with legumes
Branhamella	Animal pathogen
Chromobacterium	Purple pigmentation
Cytophaga	Gliding bacterium; cellulose degrader
Flavobacterium	Common soil bacterium
Flexihacter	Gliding bacterium
Halobacterium	Halophilic
Hyphomicrobium	Grows on one-C substrates, oligotrophic
Kingella	Animal pathogen
Neisseria	Animal pathogen
Paracoccus	Halophilic, also lithotrophic
Propionibacterium	Fermentative
Pseudomonas	Commonly isolated from soil, very divers genus
Rhizobium	Symbiotic N ₂ fixer with legumes
Wolinella	Animal pathogen
Phototrophs	1 0
Rhodopseudomonas	Anaerobic, sulfate reducer
Lithotrophs	
Alcaligenes	Uses H ₂ , also heterotrophic, common soil isolate
Bradyrhizobium	Uses H ₂ , also heterotrophic, symbiotic N ₂ fixer with legumes
Nitrosomonas	NH ₃ oxidizer
Paracoccus	Uses H2, also heterotrophic, halophilic
Pseudomonas	Uses H ₂ , also heterotrophic, common soil isolate
Thiobacillus	S-oxidizer
Thiomicrospira	S-oxidizer
Thiosphaera	S-oxidizer, heterotrophic nitrifier, aerobic denitrification

$$SO_4^{-2}$$
 + Organics \rightarrow S^{-2} + H_2O + CO_2
 S^{-2} + $2H^+$ \rightarrow H_2S

Desulvibrio and others

Sulfate is used as a TEA & 1 m w organics serve as the electron donors

Low cell y	
— P VFA) COD	_ of SRB depends on COD:S ratio, particularly readily degradable (e.g
 SRB compete with m ow COD:S favors SRB 	for substrate: high COD:S favors methanogens

Crown Sewer Corrosion

FIGURE 15.3 Cross section showing microbial involvement in the corrosion of a concrete sewer pipe. (Adapted from Sydney *et al.*, 1996.)