
Completely Mixed Activated Sludge (CMAS) Bioreactor Design Equations

Mass Balance:

Biomass:

$$QX_O + V\left(\frac{\mu_{\max} SX}{K_S + S} - k_d X\right) = (Q - Q_w)X_e + Q_w X_w$$

Substrate:

$$QS_O - V\left(\frac{\mu_{\max} SX}{Y(K_S + S)}\right) = (Q - Q_w) S_e + Q_w S_w$$

where Q, Q_w = influent flow and waste flow, respectively, m^3/d

 $V = \text{volume of aeration basin, } m^3$

 μ_{max} = maximum specific growth rate coefficient, h^{-1}

 K_S = half saturation coefficient, mg/L

 k_d = decay coefficient, h^{-1}

 X_0 , X, X_e , X_w = biomass in influent, bioreactor, effluent, and waste, mg/L as MLVSS

S = soluble substrate concentration in bioreactor, mg/L as BOD or COD

 S_{O} = influent substrate concentration, mg/L as BOD or COD

Y = biomass yield, mg biomass formed/ mg substrate utilized (mg VSS/ mg BOD)

Assumptions:

1. Influent and effluent _____ concentration is negligible

2. Aeration basin is a _____ CSTR, $S = S_w = S_e$

3. All reactions occur in _____ basin

Then:

$$\frac{\mu_{\max} S}{K_S + S} = \frac{Q_w X_w}{VX} + k_d \qquad ; \qquad \frac{\mu_{\max} S}{K_S + S} = \frac{QY}{VX} (S_O - S)$$

Observe:

$$\frac{Q}{V} = \frac{1}{\theta}$$
 ; $\frac{Q_w X_w}{VX} = \frac{1}{\theta_c}$

Where θ = the hydraulic retention time, HRT, and θ_c = the solids residence time, SRT. This results in the following design equations:

$$S = \frac{K_S \left(1 + k_d \theta_c\right)}{\theta_c \left(\mu_{\text{max}} - k_d\right) - 1} \quad ; \quad \theta_c = \frac{K_S + S}{S \left(\mu_{\text{max}} - k_d\right) - K_S k_d} \quad ; \quad X = \frac{\theta_c Y(S_O - S)}{\theta \left(1 + k_d \theta_c\right)}$$

The minimum soluble BOD concentration that can be achieved as $\theta_c \div 4$:

$$S_{\min} = \frac{K_S k_d}{\mu_{\max} - k_d}$$

The minimum θ_c achievable as $\mu \div \mu_{max}$:

$$\theta_{c_{\min}} = \frac{K_S + S_O}{S_O \left(\mu_{\max} - k_d\right) - K_S k_d}$$

Steps for Activated Sludge Design

- 1. Establish effluent soluble BOD₅ allowable to meet BOD₅ and SS effluent limits.
- 2. Determine what θ_c is required to meet the effluent soluble BOD₅ allowable.
- 3. Solve for the mixed liquor volatile suspended solids, MLVSS, concentration given a particular hydraulic residence time, θ . Or solve for θ given a particular MLVSS.
- 4. Calculate the return activated sludge (RAS) flow, Q_r , and concentration, X_r .

$$X_r'Q_r = X'(Q_r + Q)$$
 ; $X_r' = 10^6/SVI$

where X' = MLSS, mg/L (X' typically is approximately 1.2·X)

 $X_r' = RAS$ concentration, mg/L

 $Q_r = RAS \text{ flow rate, } m^3/s$

Find X_r using the sludge volume index, SVI, from the following figure:

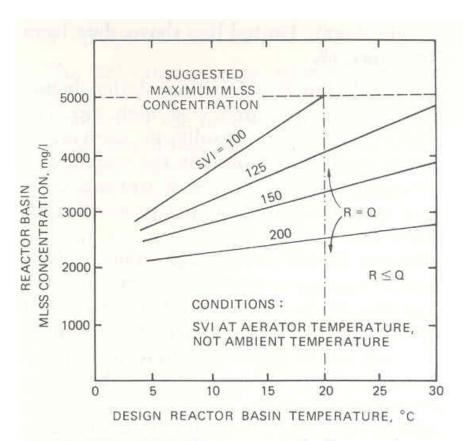


FIGURE 14-10. Recommended maximum MLSS design versus temperature and SVI.

5. Sludge production can be estimated as follows:

$$P_X = Y_{OBS} Q (S_O - S) \frac{kg}{1000 g}$$

where: $P_X = \text{sludge production, kg/d}$

 Y_{OBS} = observed growth yield, mg biomass formed, VSS/ mg

BOD₅ utilized

 $Q = influent flow, m^3/d$

 $S_0 = influent BOD_5$

 $S = effluent BOD_5$

Y_{OBS} can be estimated as:

$$Y_{OBS} = \frac{Y}{1 + k_d \cdot \theta_c}$$

6. Oxygen requirement for carbonaceous BOD removal can be calculated as:

$$O_2 req = \left(\frac{Q(S_O - S)}{f} \cdot \frac{kg}{1000 g}\right) - 1.42 \cdot P_X$$

where f = the conversion from BOD₅ to BOD₁, (0.45-0.68)

When nitrification is occurring the oxygen requirement can be calculated as:

$$O_2 \ req = \left(\frac{Q(S_O - S)}{f} \cdot \frac{kg}{1000 \ g}\right) - 1.42 \cdot P_X + 4.57 \ Q \left(N_O - N\right) \cdot \frac{kg}{1000 \ g}$$

where N_O and N are the influent and effluent NH₄-N concentrations, respectively.

7. Calculate the alkalinity consumed.

The conversion of NH₃-N to nitrate not only requires oxygen but it also consumes considerable amount of alkalinity (7.1 mg/L as CaCO₃ for every mg/L NH₃-N):

alk consumed (kg/d) = Q (N
$$_{\! O}$$
 - N) · 7.1 mg/L as CaCO $_{\! 3}$ /mg NH $_{\! 4}$ -N · (kg/1000 g)

8. **Settling Tank Design**

The design of primary and secondary settling tanks can be done on the basis of settling tests and/or established design criteria. In general, the design of tanks must meet established overflow rate and weir loading criteria.

10 State Standards Criteria

Criteria	Primary Settling Tanks		Secondary Settling Tanks	
Overflow Rate, m^3/m^2 OR = Q/A	Avg	Peak	Peak	
	41	61	49	
Weir Loading, m³/m @ WL = Q/L	< 1 mgd	> 1 mgd	< 1 mgd	> 1 mgd
	124	186	124	186

Activated Sludge Operational Considerations

An operator of an activated sludge plant is concerned with three things:

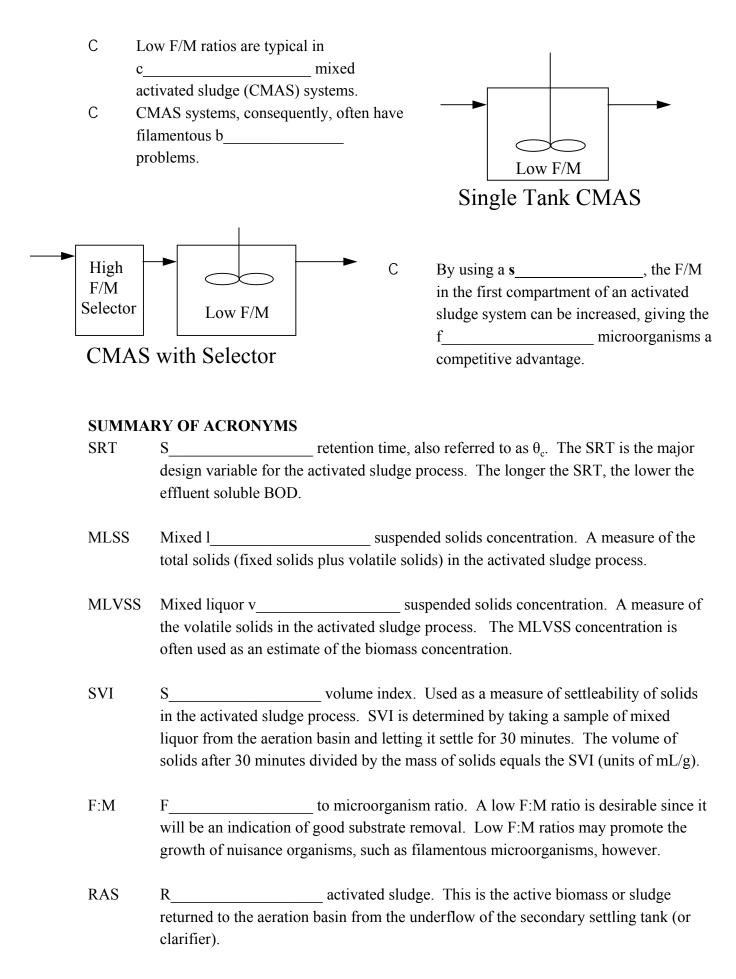
- 2.
- Sludge w_____ or solids inventory $(\theta_c, F/M)$ 3.

These three objectives/operational parameters are interrelated. A good settling sludge will produce good effluent quality. Maintaining the proper solids inventory will produce a good settling sludge. Controlling θ_c will maintain the proper solids inventory.

 $\textbf{SVI -} Sludge \ v_\underline{\hspace{1.5cm}} index.$

- C Measure of s_____
 - characteristics of biomass.
- C Measured in a g______ cylinder after 30 minutes of settling.
- C Units of mL/g.
- C A d SVI is in the range of 75 150.

Sludge Bulking


- C Sludge bulking is the condition where the SVI is h_____ and the suspended solids are not settling in the secondary settling tank.
- C It is usually an indication of **f______ organisms** long string-like organisms which outcompete the floculent organisms because of their large surface area.
- C Filamentous organisms can be caused by
 - a) 1_____ F/M ratio
 - b) l_____ DO
 - c) nutrient d_____
 - d) l_____ pH
 - e) i_____ or toxicity

F/M Ratio

C The f_____ to m____ (F/M) ratio is an alternative control parameter to θ_c for the operation of an activated sludge plant.

$$\frac{F}{M} = \frac{Q S_O}{V X} = \frac{mg BOD_5/dD}{mg MLVSS}$$

Note: the F/M ratio is inversely proportional to $\theta_{\text{c}}.$

