CE421/521 Environmental Biotechnology

Nitrogen and Phosphorus Cycles Lecture 9-26-06 Tim Ellis

Nitrification Kinetics

$$\mu = \frac{\mu_{\max} S_{NH4}}{K_{S} + S_{NH4}} \cdot \frac{S_{O2}}{K_{O} + S_{O2}}$$

where

 μ_{max} = maximum specific growth rate, h-1 K_{S} = half saturation coefficient for ammonia, mg/L as NH₄-N K_{O} = half saturation coefficient, mg/L as O2 Yield = mg biomass formed/mg ammonia utilized

Nitrification Kinetics

	Nitrosomonas		Nitrobacter	
parameter	range	typical (@ 20°C)	range	typical (@ 20°C)
µ _{max} K _S K _O Yield	0.014 - 0.092 0.06 - 5.6 0.3 - 1.3 0.04 - 0.13	0.032 1.0 0.5 0.1	0.006 - 0.06 0.06 - 8.4 0.3 - 1.3 0.02 - 0.07	0.034 1.3 0.68 0.05

Optimum pH for nitrifiers is around 8.0, range 7.5 - 8.5 (higher than for most other biological processes).

Nitrifiers are sensitive to

where I = concentration of inhibitor, mg/L K_I = inhibition coeficient, mg/L

Effects of Temperature

derivation of the $k = A e^{\frac{-\mu}{RT}}$ A _____ equation $k_2 = k_1 \theta^{(T_2 - T_1)}$ \diamond where $k_{1,2}$ = reaction rate coefficient at temperature $T_{1,2}$ $\diamond \theta = t$

Typical Theta Values

theta values		
	Nitrosomonas	Nitrobacter
μmax	1.098 - 1.118	1.068 - 1.112
K _S	1.125	1.157
k _d	1.029 - 1.104	1.029 - 1.104

Calculating Theta

 given the following measured data, calculate the theta value

T, °Cb, h^{-1} 100.0037200.0095300.0229400.0372

DENITRIFICATION

DENITRIFICATION

$$\mu = \frac{\mu_{\max}S}{K_S + S} \cdot \frac{NO_3^-}{K_{NO3} + NO_3^-}$$

DENITRIFICATION

 $6NO_3^-$ + 5CH₃OH \rightarrow 3N₂ + 5 CO₂ + 7 H₂O + 6 OH⁻ \diamond calculate COD of methanol:

calculate alkalinity:

Nitrogen Removal in Wastewater Treatment Plants

- Total Kjeldahl Nitrogen (TKN) =
 n +
- (measured by digesting sample with sulfuric acid to convert all nitrogen to ammonia)
- TKN ~ 35 mg/L in influent

a

W

 p____t removes approximately 15%
 additional removal with biomass

Methods for Nitrogen Removal

- 1. Biological
 - n
 - d
 - ANAMMOX: ammonium is the electron donor, nitrite is the TEA

 $NH_4^+ + NO_2^- \rightarrow N_2 + 2 H_2O$ Suitable for high ammonia loads (typically greater than 400 mg/L) and low organic carbon

- 2. Chemical/Physical
 - 1. air s_____
 - 2. breakpoint c_____
 - 3. ion e_____
 - 4. reverse o_____

Concerns for nitrogen discharge:

System Configurations

- Completely mixed activated sludge (CMAS)
- Conventional activated sludge (CAS)
 Sequencing Batch Reactor (SBR)
 Extended aeration, oxidation ditch, others

Activated Sludge Wastewater Treatment Plant

Completely Mixed Activated Sludge (CMAS)

Completely Mixed Activated Sludge (CMAS)

Conventional (plug flow) Activated Sludge (CAS)

Conventional Activated Sludge

Conventional Activated Sludge

Step Feed Activated Sludge

CMAS with Selector

CMAS with Selector

Contact Stabilization Activated Sludge

Sequencing Batch Reactor

Phosphorus

 limiting n______ in algae (at approximately 1/5 the nitrogen requirement)

 \bullet 15% of population in US discharges to

 wastewater discharge contains approximately 7- 10 mg/L as P

: orthophosphate

Removal of Phosphorus

◆ Chemical precipitation: – traditional p______ reactions AI^{+3} + PO_4^{-3} → $AIPO_4$ Fe^{+3} + PO_4^{-3} → $FePO_4$

- as s_____ (magnesium ammonium phosphate, MAP) $Mg^{+2} + NH_4^+ + PO_4^{-3} \rightarrow MgNH_4PO_4$

Struvite as a problem

 Scale build-up chokes pipelines, clogs aerators, reduces heat exchange capacity
 Sanned king ergb inducts

Canned king crab industry
 Kidney stones

Struvite as a Fertilizer

- Nonburning and long lasting source of nitrogen and phosphorus
- Found in natural fertilizers such as guano
- Heavy applications have not burned crops or depressed seed germination (Rothbaum, 1976)
- Used for high-value crops

For ISU study on removing ammonia from hog waste see: www.public.iastate.edu/~tge/miles_and_ellis_2000.pdf

Full Scale ASBR

- 2300 head
 operation in central
 Iowa, USA
- methane recovery for energy generation
- site for full-scale
 study for struvite
 precipitation

Biological P Removal Discovered in plug flow A.S. systems Requires anaerobic (low DO and NO_3^{-}) zone and aerobic zone Biological "battery" Grow phosphate accumulating organisms (PAO) with 7% P content Need to remove TSS

Key Reactions in Anaerobic Environment

Uptake of acetic acid
 Storage polymer (PHB) is formed
 Polyphosphate granule is consumed

Phosphate is released

Key Reactions in Aerobic Environment

- Energy (ATP) is regenerated as bacteria consume BOD
- Phosphorus is taken into the cell and stored as poly-P granule
- When BOD is depleted, PAO continue to grow on stored reserves (PHB) and continue to store poly-P

Anaerobic Zone (initial)

Anaerobic Zone (later)

Aerobic Zone (initial)

Aerobic Zone (later)

Bio-P Operational Considerations

Need adequate supply of acetic acid

- Nitrate recycled in RAS will compete for acetic acid
- May need a trim dose of coagulant to meet permit
- Subsequent sludge treatment may return soluble phosphorus to A.S.

Combined N and P Removal

 Competition between bio-P and denitrification BOD becomes valuable resource - required for both N and P removal Operation depends on treatment goals One reaction will limit - difficult to eliminate all BOD, N, and P Commercial models (BioWin, ASIM, etc.) useful to predict performance

Combined EBPR & Nitrogen Removal

Modified UCT

Sulfur

- inorganic: SO_4^{-2} S° H_2S
- organic: $R O SO_3^{-2}$

four key reactions:

- 1. H_2So can occur aerobically or anaerobically to elemental sulfur (S°)
 - a _____: Thiobaccilus thioparus oxidizes S-2 to S° \diamond S⁻² + $\frac{1}{2}O_2$ + 2H⁺ \rightarrow S° + H₂O
 - a_____: phototrophs use H2S as electron donor
 - filamentous sulfur bacteria oxidize H₂S to S° in sulfur granules: Beggiatoa, Thiothrix

Sulfur

- 2. Oxidation of E_____ Sulfur (Thiobacillus thiooxidans at low pH) $2S^{\circ} + 3O_{2} + 2H_{2}O \rightarrow 2H_{2}SO_{4}$
- 3. A ______ sulfate reduction: proteolytic bacteria breakdown organic matter containing sulfur (e.g. amino acids: methionine, cysteine, cystine)
- ______ sulfate reduction: under anaerobic 4. conditions (SR Desulvibrio and others Sulfate is used as a TEA & I_____ m___ W organics serve as the electron donors Low cell y_ P______ of SRB depends on COD:S ratio, particularly readily degradable (e.g., VFA) COD Ρ SRB compete with m_ for substrate: high COD:S favors methanogens, low COD:S favors SRB

Crown Sewer Corrosion

FIGURE 15.3 Cross section showing microbial involvement in the corrosion of a concrete sewer pipe. (Adapted from Sydney *et al.*, 1996.)

