Quantifying Microorganisms and Their Activity

CE 421/521 Environmental Biotechnology Lecture for September 19, 2006 Vaccari et al., Chapter 10

Two Events

Microbial Growth (dX/dt)

Substrate Disappearance (dS/dt)

- During balanced growth can use a surrogate measure of growth
 - Oxygen consumption
 - Carbon dioxide production
 - Methane production (anaerobic systems)

Growth vs Substrate Disappearance

Batch Growth Curve

Exponential Growth

Doubling (generation) time

CSTR or Chemostat

General mass balance; in – out – generation = accumulation

CSTR with settling

htp://www.englishing.com/iniges/Chicago01.jpg

CSTR mass balance equations

Biogeochemcial Cycles (C, N, P, & S)

- composition of b cell (molar formula: C₅H₇O₂N with P 1/5 of the N requirement)
- limiting nutrients are _____ and

Elemental breakdown	% dry mass of an <i>E. coli</i> cell
Major elements	
Ćarbon	50
Oxvgen	20
Hydrogen	8
Nitrogen	14
Sulfur	1
Phosphorus	3
Minor elements	,
Potassium	2
Calcium	0.05
Magnesium	0.05
Chlorine	0.05
Iron	0.2
Trace elements	
Manganese	all trace elements
Molybdenum	combined comprise 0.3%
Cobalt	of dry weight of cell
Copper	-
Zinc	

TABLE 14.1 Chemical Composition of an *E*. coli Cell

Adapted from Neidhardt et al. (1990).

Nitrogen

TABLE 14.10	Global Nitroger	Reservoirs
--------------------	-----------------	------------

Nitrogen reservoir	Metric tons nitrogen	Actively cycled	
Atmosphere			
N ₂	3.9×10^{15}	No	
Ocean			
Biomass	5.2×10^{8}	Yes	
Dissolved and		100	
particulate organics	$3.0 imes 10^{11}$	Yes	
Soluble salts			
(NO_3^-, NO_2^-, NH_4^+)	$6.9 imes 10^{11}$	Yes	
Dissolved N ₂	2.0×10^{13}	No	
Land			
Biota	$2.5 imes 10^{10}$	Yes	
Organic matter	1.1×10^{11}	Slow	
Earth's crust ^a	7.7×10^{14}	No	

^{*a*} This reservoir includes the entire lithosphere found in either terrestrial or ocean environments. (Adapted from Dobrovolsky, 1994.) Atmosphere is ____% nitrogen, yet nitrogen is considered a

required in

n

p

Nitrogen Cycle

Organic nitrogen

N₂

 NH_4^+

NO₂-

Fixation

- 2x10⁸ metric tons/y compared to 2.5x10¹⁰ metric tons C/y
- cyanobacteria & few others
 - non-symbiotic *Clostridia*
 - symbiotic *Rhizobium*
- .nitrogenase requires Mg²⁺ & ATP (15 to 20 ATP/N₂)

Assimilation

- NH₃ (NH₄⁺) preferred, will use NO₃⁻ but has to be reduced to NH₄⁺
- C/N ratio is approximately
 - 10:1 for aerobes
 - 150:1 for anaerobes
 - 50:1 for anaerobes in highly loaded (high rate) system
- cell composition is characterized by the empirical formula:

with the P requirement as 1/5 the N requirement (alternatively C60H87O23N12P)

- in general cell composition is
 - » 50% C» 20% O
 - » 20% 0
 - » 10-15% N
 - » 8-10% H
 - » 1-3% P
 - » 0.5-1.5

Ammonification

- Breakdown of organic N to NH₄+
- Examples:
 - Urea
 - proteins

Nitrification

Two step process:

requires 4.57 mg O₂/mg NH₄+ N converted to NO₃⁻ – N

Nitrification Kinetics

$$\mu = \frac{\mu_{\max} S_{NH4}}{K_{S} + S_{NH4}} \cdot \frac{S_{O2}}{K_{O} + S_{O2}}$$

where

 μ_{max} = maximum specific growth rate, h-1 K_{s} = half saturation coefficient for ammonia, mg/L as NH₄-N K_{o} = half saturation coefficient, mg/L as O2 Yield = mg biomass formed/mg ammonia utilized

Nitrification Kinetics

	Nitrosomonas		Nitrobacter	
parameter	range	typical (@ 20°C)	range	typical (@ 20°C)
µ _{max} K _S K _O	0.014 - 0.092 0.06 - 5.6 0.3 - 1.3	0.032 1.0 0.5	0.006 - 0.06 0.06 - 8.4 0.3 - 1.3	0.034 1.3 0.68
Yield	0.04 - 0.13	0.1	0.02 - 0.07	0.05

Optimum pH for nitrifiers is around 8.0, range 7.5 - 8.5 (higher than for most other biological processes).