

Microbial groups

CE 421/521 Lecture September 14, 2006 Vaccari et al., Chapter 10

Microbes

Microorganisms – broad category of organisms too small to be seen with the naked eye
 Integral part of every ecosystem
 Roughly 10⁶ to 10⁹ per gram of soil, biofilm or sludge sample

Microbial groups

Prokaryotes

- Bacteria (Including blue green algae)
- Archae (sometimes archaebacteria)
 - classified during the 1970's by Carl Woese and George Fox
 - Don't fit neatly into prokaryotic or eukaryotic class due to their difference in 16S rRNA - separate kingdom?
 - Includes methanogens and halophiles
- Viruses Dimitri Ivanovsky (1893) filtered sap through ceramic filters designed to remove bacteria – still resulted in tobacco mosaic virus
- Eukaryotes

Classification of microorganisms

Energy source:

Chemotrophs – energy from chemical substances
 Organotrophs – energy from organic compounds
 Lithotrophs – energy from an inorganic compound
 Phototrophs – energy from sunlight

Classification of microorganisms

Carbon source:

Heterotrophs – carbon from organic compounds
 Autotrophs – carbon from inorganic compounds
 Can have mixed classifications:

 e.g. chemoorganoheterotroph (example E. Coli)
 chemolithoautotroph (example nitrobacter)

Classification of microorganisms

Environmental preferences:

- **TEA** (anaerobic, aerobic, anoxic)
- Temperature
 - Psychrophiles
 - Mesophiles
 - Thermophiles
- 🛚 pH
 - Neutrophiles (5-9)
 - Acidophiles (< 5)
 - Alkaliphiles (> 9)

Extremophiles – can grow at extreme temperatures or osmotic pressures (e.g., halophiles)

Microbial Taxonomy

Morphology: form and visible structure
 Biocehmcial activities
 Phenotype – representing observable characteristics
 Genotype
 Characterized by DNA or RNA
 Phylogeny – based on genetic similarities

Taxonomy - What is a prokaryotic species?

Difficulty in that genetic exchange occurs between species not necessarily closely related

- Strain
 - have a recent parent cell
 - Share genetic properties with minor exceptions
- Species
 - Share at least 70% of DNA homology similarity in DNA sequence
 - Or have rRNA similarity of 97% or greater
- Genus
 - Share at least 20% of their DNA homology
 - Or have rRNA similarity of 93-95%

Nomencalture

(e.g., aquaticus, marina, coli) 1. _ (e.g., bovus, avium) H 2. Environmental c (e.g., thermophilus, halophilus) 3. (e.g., ovalis, longum, spaericus) S 4. (e.g., aureus, niger) С 5. (e.g., denitrificans, avium) S 6. (e.g., methanobacterium, cerevisiae) Ρ 7. (e.g., typhi, botulinum, pneumoniae) D 8. (e.g., winogradskii, burkholderia) 9.

Prokaryotes - shape

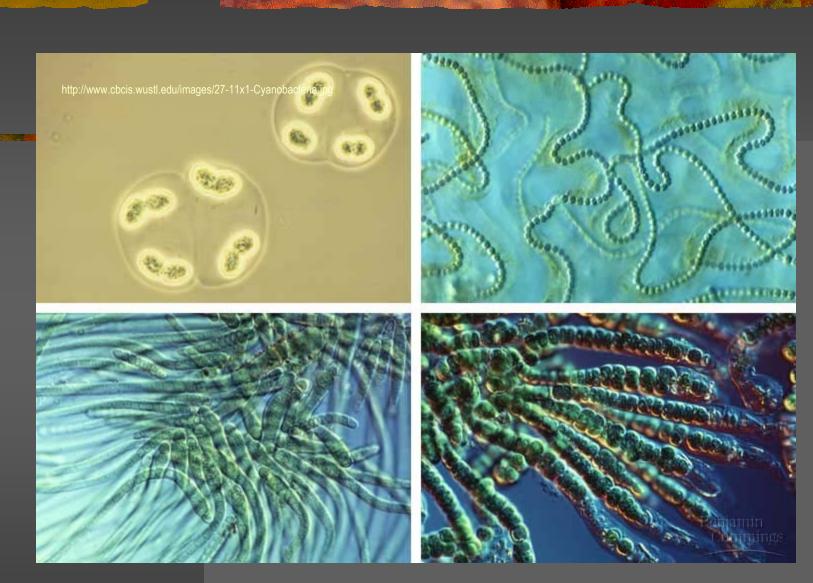
cocci (spherical, e.g., *Streptococcus*)
bacilli (rod shapes, e.g., *Bacillus subtilis*)
spirilla (spiral, e.g., *Spirillum volutans*)
filamentous

Prokaryotes - shape

Unusual

- s_____ bacteria filamentous, surrounded by a sheath
- s_____ bacteria aerobic, gram negative, at end of stalk is a "holdfast" allows it to attach to surfaces
- b_____ bacteria, multiply by budding, bud grows flagellum, settles on new surface and buds again
- g_____ bacteria, filamentous, gram-negative, "glide" along solids surfaces, *Beggiatoa* and *Thiothrix*: oxidize H₂S to S⁰

Prokaryotes - shape


- Bdellovibrio s_____ (0.2-0.3µ) flagellated bacteria that prey on gram-negative bacteria
 Actinomycetes- gram-positive, f_____,
 - have branching filaments similar to fungi -Streptomyces and Nocardia
- Cyanobacteria b _______ -g ______ algae, procaryotes, contain chlorophyl a, have characteristic blue-green color, contain gas vacuoles that enable them to float to maximize photosynthesis, responsible for algal blooms, some are toxic

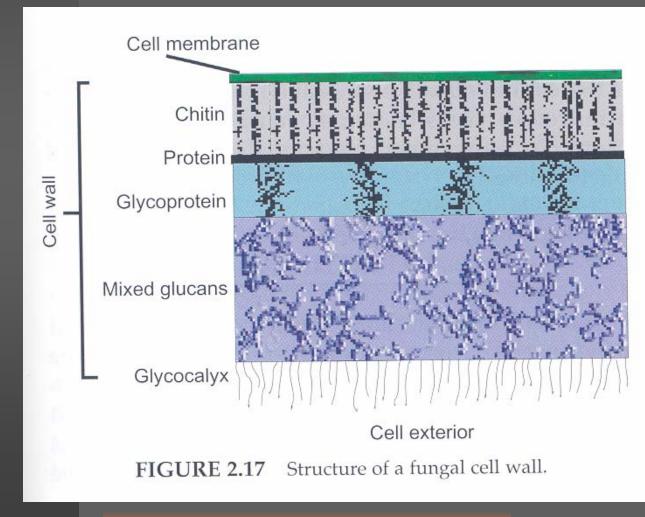
http://www.visualsunlimited.com/images/waterm arked/188/188934.jpg

Bdellovibrio

Actinomycetes

Cyanobacteria

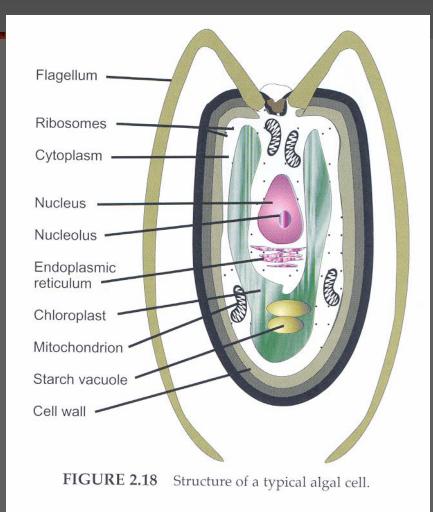
Fungi


_____, produce long filaments called

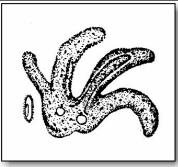
hyphae containing c

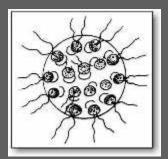
heterotrophs, use o carbon and energy _ compounds for

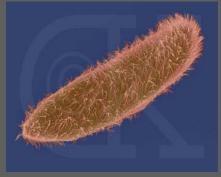
- found during n_____ limitations, low D.O., low pH conditions
- important in the cycling of organics degradation of plant polymers cellulose and lignin
- primarily aerobic (except for fermentative yeast)


Fungal cell wall

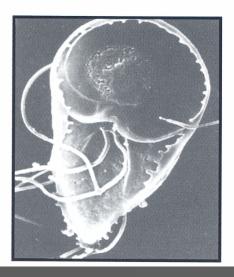
Algae

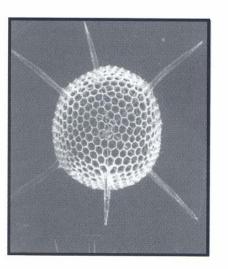

🛤 most are u , floating, phytoplankton some are f s most are p all contain chl a, some b and c s found in o ponds, polishing ponds, aerobic lagoons

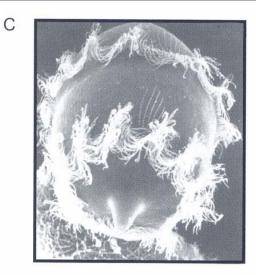

Algal Cell



Protozoa


Unicellular Heterotrophs Classification sarcodina (amoebae) mastigophora (flagellates) ciliophora (ciliates) 🛯 sporozoa





А

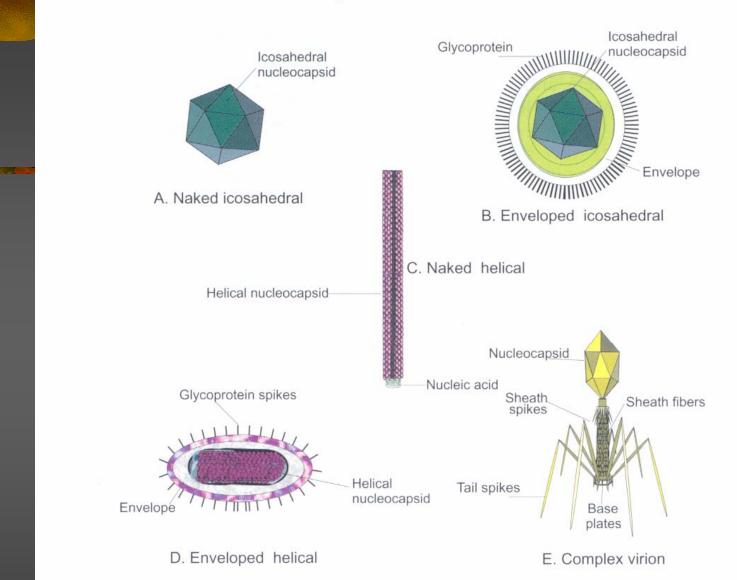


FIGURE 2.19 Basic morphology of protozoa. (A) scanning electron micrograph of a flagellar protozoa, *Giardia*; (B) scanning electron micrograph of testate cilia, *Heliosoma*; (C) electron micrograph of ciliated *Didinium*. Part A reprinted with permission from Cox (1993). Parts B and C reprinted with permission from Sleigh (1989).

Viruses

- small c_____ particles (not procaryotes or eucaryotes) are they alive?
 replication occurs in h_____
 Structure
 - c_____ of nucleic acid (could be double or single stranded, DNA or RNA) surrounded by protein coat (capsid)
 - main shapes

FIGURE 2.4 Simple forms of viruses and their components. The naked icosahedral viruses (A) resemble small crystals: the enveloped icosahedral viruses (B) are made up of icosahedral nucleocapsids surrounded by the envelope: naked helical viruses (C) resemble rods with a fine regular helical pattern in their surface: enveloped helical viruses (D) are helical nucleocapsids surrounded by the envelope: and complex viruses (E) are mixtures of helical and icosahedral and other structural shapes.

Virus Replication

- Ad ______ virus adsorbs to specific receptors, receptors can be polysaccharides, proteins, or lipoproteins
- 2. En_____ material enters cell

genetic material

Ec_

3.

- various particle or nucleic acid

- _____ capsid is stripped away, releasing
- 4. Mu_____using machinery of host cell
- viral nucleic acids are replicated

of mature virions - host cell

- 5. Ma______ protein coat is synthesized and combined with nucleic acid to form nucleocapsid
- 6. Re______ruptures release active viruses

Virus Detection and Enumeration

- animal i______ newborn mice injected with inoculum and observed for signs of disease
 - t_____ cultures viruses quantified by measuring effect on host cell lines forming a monolayer on glass or plastic assay bottles, effect is measure by
- p_____ assay virus is placed on surface of host cell monolayer, virus replication leads to localized area of cell destruction called plaques
- s dilution endpoint virus suspension is diluted serially and the highest dilution (smallest amount of virus) that causes a cytopathic effect in 50% of samples is reported as the tissue culture infectious dose (TCID50)
- most p_____ number serial dilutions placed in tubes or microwells with host cells, positive tubes are recorded and MPN value computed from standardized MPN table.

MPN

Uses serial dilutions and statistical probabilities for the most likely number of organisms giving a positive response

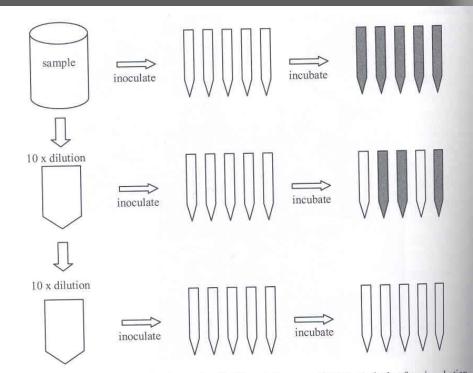


Figure 11.13 MPN method schematic. Positive tubes are shown as dark after incubation.

Example: Take 1 mL of sample and add to 1 L of water then perform the following serial dilutions:10 mL, 1 mL, and 0.1 mL and incubate with substrate. If we get 5 positive tubes in the first dilution, 4 positive tubes in the second dilution, and 1 in the last dilution, what is the MPN of the sample?

Solution: from the following table we can see that the as diluted MPN is 170. Since we had a 1000 fold dilution to start with, the resulting MPN is 170,000 organisms per 100 mL

	Number of positive tubes				Number of positive tubes				Number of positive tubes				Number of positive tubes				Number of positive tubes				Number of positive tubes			
10 mL	1 mL	0.1 mL	MPN	10 mL	1 mL	0.1 mL	MPN	10 mL	1 mL	0.1 mL	MPN	10 mL	1 mL	0.1 mL	MPN	10 mL	1 mL	0.1 mL	MPN	10 mL	1 mL	0.1 mL	MPN	
0	3	0	5.6	1	3	0	8.3	2	3	0	12	3	3	0	17	4	3	0	27	5	3	0	79	
0	3	1	7.4	1	3	1	10 ·	2	3	1	14	3	3	1	21	4	3	1	33	5	3	1	110	
0	3	2	9.3	1	3	2	13	2	3.	2	17	3	3	2	24	4	3	2	39	5	3	2	140	
0	3	3	11	1	3	3	15	2	3	3	20	3	3	3	28	4	3	3	45	5	3	3	180	
0	3	4	13	1	3	4	17	2	3	4	22	3	3	4	31	4	3	4	52	5	3	4	210	
0	3	5	15	1	3	5	19	2	3	5	25	3	3	5	35	4	3	5	59	5	3	5	250	
0	4	0	7.5	1	4	0	11	2	4	0	15	3	4	0	21	4	4	0	34	5	4	0	130	
0	4	1	9.4	1	4	1	13	2	4	1	17	3	4	1	24	4	4	1	40	5	4	1	170	
0	4.	2	11	1	4	2	15	2	4	2	20	3	4	2	28	4	4	2	47	5	4	2	220	
0	4	3	13	1	4	3	17	2	4	3	23	3	4	3	32	4	4	3	54	5	4	3	280	
0	4	4	15	1	4	4	19	2	4	4	25	3	4	4	36	4	4	4	62	5	4	4	350	
0	4	5	17	1.	4	5	22	2	4	5	28	3	4	5	40	4	4	5	69	5	4	5	430	
0	5	0	9.4	1	5	0	13	2	5	0	17	3	5	0	25	4	5	0	41	5	5	0	240	
0	5	1	11	1	5	1	15	2	5	1	20	3	5	1	29	4	5	1	48	<i>`</i> 5	5	1	350	
0	5	2	13	1	5	2	17	2	5	2	23	3	5	2	32	4	5	2	56	5	5	2	540	
0	5	3	15	1	5	3	19	2	5	3	26	3	5	3	37	4	5	3	64	5	5	3	920	
0	5	4	17	1	5	4	22	2	5	4	29	3	5	4	41	4	5	4	72	5	5	4	1600	
0	5	5	19	1	5	5	24	2	5	5	32	3	5	5	45	4	5	5	81	-	-	-		