Public Health Microbiology

CE421/521 Lecture 10-03-06 Prof. Tim Ellis

Pathogens and parasites

□ Epidemiology

- Definitions
 - \Box epidemiology = study of spread of d_____ in populations
 - infectious disease = disease that are spread from one h_____ to another
 - incidence = number of i_____ with the disease in a population
 - prevalence = the p_____ of a population with the disease at a given time
 - □ epidemic = disease outbreak with a high i_____
 - $\square \quad endemic = disease outbreak with a l_____ incidence$
 - \square pandemic = disease outbreak across c_____

History of Epidemiology

- one of the early theories was that disease was caused by
 b ______a ____ (malaria actually means
 "bad air")
- microorganisms weren't s _____ until Antonie van Leewenhoek - a 17th Century native of Holland devised the first m ______ with sufficient magnification to see protozoa and bacteria
- wasn't until the middle of the 19th Century that
 and disease were linked cities that
 cleaned up their filth and rubbish had lower
 of disease

History of Epidemiology

- □ J_____S____ and the Broad Street
 - he was able to show that 59 of the 77 c______
 victims used the pump on Broad Street
 - There was a w______ in the vicinity where cholera was endemic but nobody at this workhouse got cholera.

This particular workhouse had its own w_

The cause of contamination turned out to be the d_____ of an infected person that was

within three feet of the well.

Background

- many if not most pathogens are w_____ and are therefore a concern to environmental engineers
- need to be familiar with l_____c ____ of pathogens: some can stay infective for periods longer than one year, some less than one day, some have a l_____ period greater than one year
- almost all pathogens can be spread by a s_ carrier - makes detection difficult

Chain of infection

 Infectious agent - m dose (MID) varies widely

 frank pathogen versus o_ pathogens

Reservoirs

- required for pathogen to s_____ and m_____
- Can be 1 _____: humans, animals, plants
- □ or non-living: s_____, w____, w_____

Mode of transmission

- Person to p______- most common (STDs, hands, coughing, sneezing fall into this category)
- W______- intestinal illnesses (gastroenteritis), giadiasis, cryptosporidiosis (Milwaukee, Wisconsin, 1993: 400,000 affected, 47 deaths - animal runoff suspected)
- \Box F

irrigation water, handling, preparation, shellfish

- \Box A
 - legionaires disease
- Malaria

F

clothing, toys, etc.

Portal of Entry

□ Gastrointestinal t_

 \square R tract

Host susceptibility

 \Box S

- A_____
- $\square \text{ Natural or acquired } i$

□ H_____ (mental and physical)

Pathogens in Wastewater

□ Bacteria

- F material contains approximately 1012 bacteria per gram
- B______ content is approximately 9% of the weight (wet basis)
- Important groups:
 - □ Salmonella most p_____ (over 2000 types)
 - primarily a f _____ contaminant, but transmission by _____ water possible
 - causes gastroenteritis

Bacterial Pathogens

- Salmonella typhi produces t _____ causing typhoid fever
- □ Shigella
 - causal agent of bacillary d
 - small i _____ dose (as low as 10 organisms)
 - mode of t _____: primarily person to person, but f ______ and waterborne possible (outbreak in Florida of 1200 people)
 - difficult to e______ in laboratory (viable but not culturable)

Bacterial Pathogens

- Vibrio cholera causative agent of c_____ profuse diarrhea, r_____loss of fluid, causing death in short time period
 - e_____ in various parts of Asia (Bengal state of India, Bangladesh)
 - documented outbreaks linked to s _____ contaminated
 v
- Escherichia coli (E. Coli)
 - found in gastrointestinal tract of humans and w______ blooded animals
 - many are harmless, some p_
 - 2-8% have been found to be enteropathogenic (EPEC) causing t______ diarrhea
 - infective d_____ is relatively high 106 to 109 organisms
 - several outbreaks have been associated with water d______
 systems
 - $\Box \qquad \text{Scotland} (1990)$
 - □ Cabool, Missouri (1990) 243 documented cases of diarrhea and four d_

Bacterial Pathogens

Yersinia - a _____ gastroenteritis s _____ are a major reservoir waterborne incidence was suspected as cause of some o psychotrophic - t_____ at low temperatures ($\sim 4^{\circ}$ C) poorly c_____ with bacterial indicator organisms Campylobacter a gastroenteritis gastroenterfus
 municipal water supplies and m______streams implicated for outbreaks:
 V______(1978) 2,000 out of a population of 10,000 infected high recovery of organisms in s_____ water in Fall (55% of samples positive) and Winter (39% of samples positive) poorly correlated with bacterial i_____ organisms Legionella pneumophilia - causative bacteria in Legionaire's disease first encountered in P_____ in 1976 found in natural habitats such as 1_____ and r_____ acute pneumonia (respiratory distress) with high f rat organism is s_____ by aerosolization microbial a _____ from evaporative condensers, humidifiers and cooling towers also affects gastrointestinal, u_____, and nervous system can be persistent in local water distribution systems (e.g. h_____) Other opportunistic bacterial pathogens -Pseudomonas Aeromonas Kleibsiella Flavobacterium hospitals can harbor a resistant strains

Viral Pathogens

- 140 known v pathogens
- Smallest "living" unit, but are they alive? Require a h_____ c____ to reproduce
- Invade cells and take over their m______ functions
- Infect h_____, animals, plants, bacteria, protozoa, etc. п
- Weren't identified until 1931 with advent of e_____ microscope
- Viruses are ingested, m_____ in intestines and are excreted in large numbers
- Usually present in small numbers overall therefore need to be c in order to detect

 - Adsorption to m______filters
 D______using animal tissue culture, immunological testing (ELISA) or gene probes
- Most probable transmission is p______to person or foodborne, but w______transmission also possible
- Infection depends on MID and host s
- MID is s_____ compared to bacterial pathogens (tens of plaque forming units, PFUs)
- Viruses can cause f_____, diarrhea, respiratory infection, meningitis, or paralysis
- Difficult because can't treat with a _____ (can use antibiotics to prevent secondary infection)
- Some v_____ available

- Hepatitis A (i Hepatitis HAV) oral/fecal route
 - short i_____ period (2-6 weeks)
 - oral/fecal route of transmission (water borne, foodborne, or person to person)
 - causes 1 damage, nausea, fatigue, jaundice (yellowing of eyes), loss of appetite
 - p_____ worldwide
 - s_____ contamination of particular concern c shellfish ir responsible for 292,000 cases shellfish in 1988 in Shanghai was
- Hepatitis B (s_____ Hepatitis HBV) П
 - transmitted by infected b_____ or sexual contact
 - higher m_____ than HAV (1-4%)

□ V_____ gastroenteritis

- rotavirus -
 - □ 70-nm particles, d_____ stranded RNA
 - acute i gastroenteritis
 - responsible for significant proportion of childhood mortality in
 d______ countries (millions of deaths per year)
 - □ major c_____ of traveler's diarrhea
 - □ w_____pathogen
 - fecal/oral route most l_____, but respiratory route also suspected
 - □ ELISA kits are available for d_____

- □ Norwalk virus
 - small 27 nm virus d_____ in Norwalk, Ohio
 - waterborne and f
 - difficult to detect in
 - e_____ samples
 - gastroenteritis and traveler's diarrhea
 - 42% of n gastroenteritis attributed to Norwalk virus in one study

- □ Other viruses
 - AIDS/HIV not considered a waterborne pathogen, but may s______in water for a limited time
 - c virus not waterborne
 - adenovirus can cause e infections
 (conjunctivitis) in swimming pools and respiratory disease
 - poliovirus can cause p_____, aseptic meningitis

Protozoan Pathogens

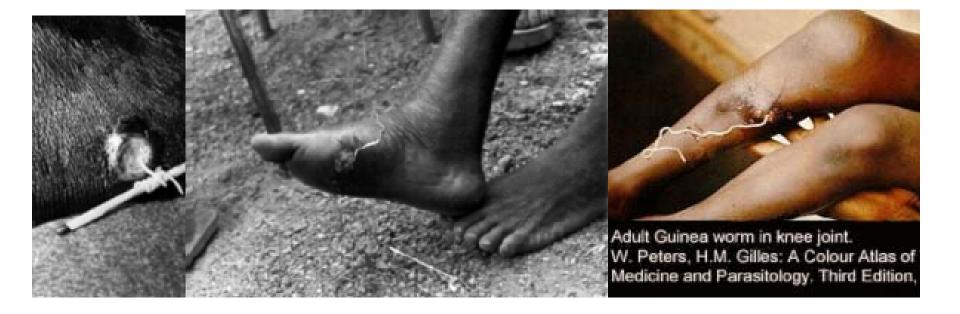
- Most produce c that are resistant to disinfection, can survive for long periods of time
- In 1991-1992 there were 34 disease o______ associated with waterborne pathogens affecting about 17,000 people
 - five of 34 were c_____ water systems
 - 29 were c_____, resorts, recreation areas, restaurants, and private systems
 - in 11 of the outbreaks the cause was i
 - 7 of the 11 were p _____ parasites *Giardia* or *Cryptosporidium*
 - 4 were h _____ A, shigella, or specific chemicals

Protozoan Pathogens

Giardia lamblia

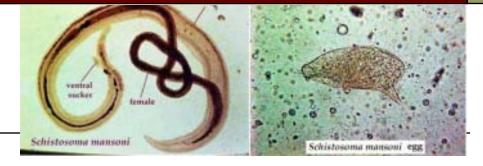
- i person can excrete 106 cysts per gram of feces
- wild and domestic animals act as r
- e in mountain areas (beavers, muskrats, dogs, cats)
- infection may last for months to y
- MID is f than 10 cysts
- causes diarrhea, a pain, nausea, fatigue, and weight loss (rarely fatal)
- b_____ diarrhea i _____ may last from months to years
- first major outbreak occurred in Rome, NY in 1975 5,000 people (10% of the population) water had been c_____ but not f
- major factor in waterborne outbreaks (as high as 50%)
- organisms don't correlate well, cryptosporidium does
- *Giardia* has been detected in 16% of p_____ water supplies at an average concentration of 3 cysts per 100 mL
- prevalence may be as high as 80% of s_____ water supplies

Cryptosporidium


- prevalent in c_____ and sheep (billions of oocysts shed in feces every day)
- infections in h_____ not detected until 1970's П
- incidence in w_____ outbreaks not identified until late 1980's
- cyst releases sporozoite after i_____ п
- 1 MID (possibly as low as 1-10)
- p_____ diarrhea, rapid water loss, weight loss, nausea, vomiting, fever
- diarrhea lasts from 1-10 days usually, longer for immunodeficient p_____
- prevalence in population is approximately _____%
- person to person contamination most probable route, hygiene important especially in d c c
- major waterborne outbreaks:
 - New Carrollton, Georgia
 - 1987 13,000 people infected
 - No indicator organisms identified
 - 39% of patients t
 p
 for crypto

 Improper s
 f
 operation implicated
 - Milwaukee, Wisconsin
 - 1993 403,000 people infected, several deaths (#?)
- Improper c______ and sand filter operation implicated *Cryptosporidium* has been detected in _____% of potable water supplies at an average concentration of 43 cysts per 100 mL, prevalence may be higher in surface water supplies

Helminths


- Similar to protozoan o______ in survivability and resistance to disinfection
- □ Parasitic w_
- most are transmitted in contaminated f
- □ Some are transmitted by other routes: *Schistosoma* in u_____
- Dracunciliasis (guinea worm) skin
 b_____

Guninea Worm

Schistosomiasis

- □ Affects nearly _____ million
- □ Africa, South A_____, parts of Asia
- □ 200,000 d_____ per year
- □ Causes enlargement of l_____, diarrhea, anemia
- Free swimming l_____ in water called cercaria are emitted from s_____ which serve as intermediate hosts
- $\hfill\square$ Cercaria attach to human s_____ and penetrate to the blood stream
- □ They mature in the l_____, eggs are passed in urine
- □ Eggs hatch in water into free swimming c_____ larvae and infect snails
- □ D_____ and irrigation projects in developing countries have created ideal conditions for the spread of the disease

Ascariasis (roundworms)

- MID is a few infective e_____ Each female can produce ______ eggs П per day Resistant to disinfection, can survive 2-7 years in П S
- High prevalence worldwide _____ million to ____ П billion (1983)
- 85% of infections are s_____
- Symptoms include pneumonia, nausea, abdominal pain,
 - m
- A child that has _____ worms may lose 10% of his П daily intake of
- p_____ Vitamin ____ and ____ deficiencies possible П
- part of life cycle spent in l П

