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where . is the specific growth rate coefficient (hr™*). It is referred to as a specific
rate coefficient because it defines the rate of biomass growth in terms of the con-
centration of active biomass present, i.e., the mass of biomass COD formed per unit
time per unit of active biomass COD present. Equation 3.35 holds for any type of
bacterial growth, regardless of the nature of the electron donor or acceptor, although
much of the following is written in terms of heterotrophic biomass growth on an
organic substrate. Consequently, subscripts are not used at this point to distinguish
between heterotrophic and autotrophic biomass, although they will be used later
when it is necessary to make that distinction. Substitution of Eq. 3.35 into Eq. 3.34
defines the rates of substrate removal and oxygen (electron acceptor) utilization as-
sociated with biomass growth. It is important to note that the equation for oxygen
utilization is also true for other electron acceptors, such as nitrate, as long as the
quantity is expressed in oxygen equivalents.

3.2.7 Effect of Substrate Concentration on

The Monod Equation. Originally, exponential growth of bacteria was consid-
ered to be possible only when all nutrients, including the substrate, were present in
high concentration. In the early 1940s, however, it was found that bacteria grow
exponentially even when one nutrient is present only in limited amount.*® Further-
more, the value of the specific growth rate coefficient, w, was found to depend on
the concentration of that limiting nutrient, which can be the carbon source, the elec-
tron donor, the electron acceptor, nitrogen, or any other factor needed by the organ-
isms for growth. Since that time, the generality of this observation has been sub-
stantiated often, so that it can now be considered to be a basic concept of microbial
kinetics.** Let us first consider the situation when only an organic substrate is growth
limiting.

Figure 3.1 illustrates the relationship that is obtained when p is measured as
a function of a single limiting substrate concentration. A number of different types
of experiments can be performed to develop such a relationship and they are dis-
cussed in Chapter 8. The important thing to note at this time is that . initially rises
rapidly as the substrate concentration is increased, but then asymptotically ap-
proaches a maximum, which is called the maximum specific growth rate, f.

The question of the best mathematical formula to express the relationship
shown in Figure 3.1 has been the subject of much debate. No one yet knows enough
about the mechanisms of biomass growth to propose a mechanistic equation that will
characterize growth exactly. Instead, experimenters have observed the effects of var-
ious factors on growth and have then attempted to fit empirical equations to their
observations. Consequently, all equations that have been proposed are curve-fits and
the only valid arguments for use of one over another are goodness of fit, mathe-
matical utility, and broad acceptance.

The equation with historical precedence and greatest acceptance is the one
proposed by Monod (mo nd’).** Although his original work was done in batch re-
actors, it was later extended and refined by workers using continuous cultures of
single bacterial species growing on defined media and it was concluded that the
curve could be approximated adequately by the equation for a rectangular hyper-
bola.** Consequently, Monod proposed the equation:
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Figure 3.1 Typical plot of the relationship between the specific growth rate coefficient and
the concentration of a noninhibitory substrate. The parameter values given were used to
construct the curve with the Monod equation (3.36).

- S

W= b, (3-36)
where K is the half-saturation coefficient. Ks determines how rapidly p. approaches
{. and is defined as the substrate concentration at which p is equal to half of ji, as
shown in Figure 3.1. The smaller it is, the lower the substrate concentration at which
. approaches L. Because of his pioneering efforts in defining the kinetics of micro-
bial growth, Eq. 3.36 is generally referred to as the Monod equation.

Because of the similarity of Eq. 3.36 to the Michaelis—Menten equation in
enzyme kinetics, many people have erroneously concluded that Monod proposed it
on mechanistic grounds. While the Michaelis—Menten equation can be derived from
consideration of the rates of chemical reactions catalyzed by enzymes, and has a
mechanistic basis, the Monod equation is strictly empirical. In fact, Monod himself
emphasized its empirical nature.®

The Monod equation has been found to fit the data for many pure cultures
growing on single substrates, both organic and inorganic, and has been used exten-
sively in the development of models describing the continuous cultivation of micro-
organisms. It has not been blindly accepted, however, and other workers have pro-
posed alternative equations that fit their data better.***”'* Nevertheless, it is still the
most widely used equation.

Because the Monod equation was developed for pure cultures of bacteria grow-
ing on single organic substrates, two significant questions arise when its adoption is
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considered for modeling biochemical operations for wastewater treatment. The first
concerns whether it can be used to express removal of a substrate that is really a
mixture of hundreds of organic compounds measured by a nonspecific test like COD,
since that is the nature of the organic matter in wastewater. Can the Monod equation
adequately describe the effect of biodegradable COD on the specific growth rate of
bacteria? The second question arises from consideration of the microbial commu-
nities present in wastewater treatment operations. As seen in Chapter 2, those com-
munities are highly complex, containing not only many bacterial species, but higher
life forms as well. Can the growth of such a heterogeneous assemblage be expressed
simply as “biomass’> by the Monod equation? Many researchers have investigated
these questions, and it is generally agreed that the answer to both is yes.>'****"!
Nevertheless, it should be recognized that the manner in which the culture is grown
will have a strong impact on its community structure, and that the values of . and
K obtained from mixed culture systems are in reality average values resulting from
many interacting species.'>**** Consequently, it has been recommended that (L and
K; be characterized by ranges, rather than by single values, just as was recommended
for Y. It can be concluded, however, that the Monod equation is a reasonable model
with which to describe the kinetics of microbial growth on complex organic sub-
strates in wastewater treatment systems, and consequently, it is widely used. There
are situations, however, in which it would be desirable to model the effects on
microbial growth rates of individual organic compounds in complex mixtures. This
situation is very complicated,” however, and will be covered in Chapter 22.

Simplifications of the Monod Equation. Examination of Eq. 3.36 reveals that
two simplifications can be made, and this is often done in the modeling of wastewater
treatment systems. First, it can be seen that if Ss is much larger than Kj, the equation
may be approximated as:

(™ (337

This is called the zero-order approximation because under that condition the specific
growth rate coefficient is independent of the substrate concentration, i.e., it is zero
order with respect to Ss, and equal to the maximum specific growth rate coefficient.
In other words, the bacteria will be growing as rapidly as possible. Second, if Ss is
much smaller than K, the term in the denominator may be approximated as Ks and
the equation becomes:

o~ % S (3.38)
This is called the first-order approximation because . is first order with respect to
Ss. Although Eq. 3.38 is often easier to use than the Monod equation, care should
be exercised in its use because serious error can result if Sg is not small relative to
K. When COD is used as a measure of the total quantity of biodegradable organic
matter, Kg can be relatively large, with the result that Sg in activated sludge reactors
is often less than Ks. Consequently, Eq. 3.38 is sometimes used to model such
systems.

Garrett and Sawyer” were the first to propose the use of Egs. 3.37 and 3.38
because they had observed that the specific growth rate coefficient for bacteria was
directly proportional to the substrate concentration at low values and independent of
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it at high values. Although they recognized that these two conditions were special
cases of the Monod equation, others who adopted their first-order equation incor-
rectly considered it to be an alternative expression.

Inhibitory Substrates. On occasion, particularly in the treatment of synthetic
(xenobiotic) organic compounds in industrial wastewaters, situations are encountered
in which the specific growth rate of the microorganisms reaches a maximum and
then declines as the substrate concentration is increased, as illustrated in Figure 3.2.
Obviously, the Monod equation is not adequate for depicting this situation, and
consequently, considerable effort has been expended to determine an appropriate
equation.’>**'* As with normal, naturally-occurring, noninhibitory (biogenic) sub-
strate, many different models could be used to represent the observed relationship
between the substrate concentration and ., and from a statistical point of view there
is little to recommend one over another.’>'* Consequently, as with the Monod equa-
tion, it has been argued that model selection should be based on familiarity and ease
of use, leading to a recommendation that an equation based on the enzymatic model
of Haldane* should be used. Andrews® was the first to propose general use of such
a function for depicting the effects of inhibitory organic substrates on bacterial
growth rates, and thus it will be called the Andrews equation herein. Its form is:

) S
=l R s+ SUK

Examination of Eq. 3.39 reveals that it is similar to the Monod equation, con-
taining only one additional parameter, K, the inhibition coefficient. Note that when
K, is very large the Andrews equation simplifies to the Monod equation, demonstrat-
ing that [i and K have the same meaning in both equations. Unlike the situation for
a noninhibitory substrate, however, [. cannot actually be observed and is a hypo-
thetical maximum specific growth rate that would be attained if the substrate were
not inhibitory. Furthermore, since j. cannot be observed, Kg also takes on a hypo-
thetical meaning. The most outstanding characteristic of the curve in Figure 3.2 is
that p passes through a maximum, p.*, at substrate concentration S&, where

(3.39)

A

. _ [
o= 2(KS/K[)°'5 +1 (3.40)
and
S¥ = (Ks K™ (3.41)

Equation 3.40 is important because it demonstrates that the degree of inhibition is
determined by Ky¢/K;, and not just by K; alone. The larger K¢/K;, the smaller p* is
relative to ., and thus, the greater the degree of inhibition. Furthermore, because
they are measurable, p* and S¢ are important in the determination of the kinetic
parameters for inhibitory substrates. Equation 3.39 has been used widely in the mod-
eling of various wastewater treatment systems, and will be adopted herein for de-
picting the effect of an inhibitory substrate on the specific growth rate of bacteria
degrading it.

Effects of Other Inhibitors. Sometimes one compound may act to inhibit mi-
crobial growth on another compound. For example, some organic chemicals are
known to inhibit the growth of nitrifying bacteria,”'** whereas others inhibit the
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Figure 3.2 Typical plot of the relationship between the specific growth rate coefficient and
the concentration of an inhibitory substrate. The parameter values given were used to construct
the curve with the Andrews equation (3.39). Note that the values of jiL and K are the same
as in Figure 3.1.

growth of heterotrophic bacteria on biogenic organic matter.'” In those cases it is
necessary for the kinetic expression to depict the effect of the concentration of the
inhibitor (S;) on the relationship between p and Ss. If the Monod equation can be
used to relate p to S in the absence of the inhibitor, then the effect of the inhibitor
can be expressed as an effect on L and/or Ks.”*'* Several types of inhibitors have
been defined by analogy to enzyme inhibition, but all can be modeled by an extension
of the Monod model proposed by Han and Levenspiel:*®

. S
iy (1 Si*) [SS + K1 — si/si*)m] (3.42)

where S is the inhibitor concentration that causes all microbial activity to cease and
m and n are exponents that reflect the impact of increasing inhibitor concentrations
on K and [, respectively. Equation 3.42 has been used successfully to model the
effects of various xenobiotic compounds on the removal of biogenic organic mat-
ter.'”® Its use will be discussed in Chapter 22.

3.2.8 Specific Substrate Removal Rate

In earlier sections it was stated that the basis for writing stoichiometric equations
was arbitrary and that the reference component was the choice of the investigator.
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Thus, it is not surprising that many investigators™**'** have selected substrate re-
moval, rather than biomass growth, as their basic event and have written their rate
equations accordingly. Combining Eqgs. 3.34 and 3.35 yields:

tss = —(1/Y)Xs (3.43)

The term w/Y has been called the specific substrate removal rate and given the
symbol q.* (Note that the subscript H has been dropped from Y and Xj to emphasize
the general nature of Eq. 3.43.) Obviously, q will be influenced by Ss in exactly the
same way as ., and Eqs. 3.37 through 3.42 can be written in terms of it. When this
is done, the maximum specific substrate removal rate, q, is used in place of L, where:

q=pY (3.44)

Both first- and zero-order approximations have been used for the relationship be-
tween q and Sg, just as they have for w. In fact, the ratio of q over K has been
called the mean reaction rate coefficient and given the symbol k.

k. = §/Ks (3.45)

All restrictions that apply to the approximate expressions for the effect of Ss on
also apply to q.

3.2.9 Multiple Limiting Nutrients

In the broad sense, nutrients can be divided into two categories: complementary and
substitutable.” Complementary nutrients are those that meet entirely different needs
by growing microorganisms. For example, ammonia provides the nitrogen needed
for protein synthesis while glucose provides carbon and energy. If either was missing
from the growth medium and no substitute was provided, no growth would occur.
Substitutable nutrients, on the other hand, are those that meet the same need. For
example, ammonia and nitrate can both provide nitrogen whereas glucose and phenol
can both provide carbon and energy. Thus, ammonia and nitrate are substitutable for
each other, as are glucose and phenol. In this section, we will consider simultaneous
limitation of specific growth rate by two complementary nutrients. As stated previ-
ously, consideration of the effects of multiple carbon sources, i.e., multiple substi-
tutable nutrients, is very complex,” and will be covered in Chapter 22.

In spite of its potential importance in the environment, relatively little is known
about how microorganisms respond to simultaneous limitation by two or more com-
plementary nutrients.” Because the uncertainty increases greatly as the number of
nutrients involved increases, we will limit our considerations to only two.

Interactive and Noninteractive Relationships. Consider two complementary
nutrients, Sg; and Ss,. Both are required for biomass growth and are present at low
concentration in the environment in which the biomass is growing. Which will con-
trol the specific growth rate? Two different philosophies have been developed to
answer this question, and the models representing them have been classified as in-
teractive and noninteractive.’®

An interactive model is based on the assumption that two complementary nu-
trients can both influence the specific growth rate at the same time. If both are
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required for growth and are present at concentrations equal to their half-saturation
coefficients, then each alone can reduce . to one-half of .. However, since both
effects are occurring simultaneously, the result would be to reduce p to one-fourth
of j.. The most common type of interactive model in use is the multiple Monod
equation:*'*?

s ™ Ss1 Ss2
A (Ks1 + SSI) (Ks2 + ssz) (3.46)

Any time the concentrations of Ss, and Ss, are such that both Ss,/(Ks, + Ss;) and
Sso/(Ks; + Ss;) are less than one, they both act to reduce . below fu. This has two
impacts. First, for a given value of Sg;, p will be lower when Sg, is also limiting
than it would be if Sg, were present in excess. Second, there is not a unique value
of . associated with a given value of Sg, or Ss,, as there was with Eq. 3.36. Rather,
it depends on both.

A noninteractive model is based on the assumption that the specific growth
rate of a microbial culture can only be limited by one nutrient at a time. Therefore,
i will be equal to the lowest value predicted from the separate single-substrate
models:***

 BSe  @Se )
= s 3.47
W= mn (Ks + S " Kg + ssz> (347)

If Ss1/(Ks; + Ss1) < Sso/(Ks> + Ss;), nutrient Sg, is rate limiting, and vice versa. If
Ssi/(Ks1 + Ss1) = Sso/(Ks, + Ssz), then both are rate limiting, but that occurs only
under special conditions. In the noninteractive conceptualization, the normal Monod
equation (Eq. 3.36) would apply for whichever nutrient was rate limiting and the
concentration of the other would have no impact on .

Only limited experimental evidence is available to support one model over the
other. Bae and Rittmann’ have shown both theoretically and experimentally that the
interactive model is more appropriate when the two limiting constituents are the
electron donor and acceptor. Furthermore, Bader® has compared the mathematical
characteristics of the two expressions. The noninteractive model, by its very nature,
causes a discontinuity at the transition from one nutrient limitation to another. It also
predicts significantly higher growth rates in the region where Ss;/Ks; and Ss,/Ks, are
small. The interactive model does not cause discontinuities, but may err on the side
of predicting lower growth rates when Ss,/Ks; and Ss;/Ks, are both small. Both
functions become asymptotically the same if either nutrient is present in excess.
Finally, the interactive model is mathematically preferable for modeling dynamic
situations because it is continuous.

Equation 3.46, the interactive model, will be adopted for use herein. There are
three reasons for this choice. First is the evidence provided by Bae and Rittmann.’
Second, for the type of situation likely to be encountered in biochemical operations
for wastewater treatment, the interactive model is more conservative. Third, it works
well when one nutrient is the electron donor (the substrate) and the other is the
electron acceptor (oxygen or nitrate),'*'"> a common occurrence in wastewater treat-
ment systems.

A special case of multiple nutrients occurs when an increase in the concentra-
tion of one nutrient acts to diminish microbial activity. For example, consider the
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growth of heterotrophic bacteria under anoxic conditions. Because nitrate reduction
can serve as an alternative to aerobic respiration, the enzymes involved in the transfer
of electrons to nitrate and its reduced products are influenced negatively by the
dissolved oxygen concentration and consideration must be given to this fact when
expressing the kinetics of growth under anoxic conditions. Oxygen can have two
effects: (1) it can repress the synthesis of denitrifying enzymes, and (2) it can inhibit
their activity.”**"**!"* Although there are exceptions, as a general rule the presence
of oxygen in the medium (and/or its active utilization as the terminal electron ac-
ceptor) represses the synthesis of the nitrate reducing enzyme system. When oxygen
is absent, or is present in amounts that are insufficient to meet the needs of the
culture, derepression occurs and the enzymes are synthesized. Complications occur,
however, when the biomass is cycled between aerobic and anoxic conditions and
this appears to alter the regulatory system so that some enzyme synthesis can con-
tinue at diminished rates even in the presence of dissolved oxygen."” The effect of
oxygen on the activity of the enzymes depends on the bacterial species involved. In
some, the activities are diminished in the presence of oxygen, whereas in others they
are not. Nevertheless, it appears that inhibition of enzyme activity by oxygen is the
primary mechanism influencing nitrate reduction rates in systems in which the bac-
teria are continually cycled between aerobic and anoxic conditions,'*? and that prior
growth under anoxic conditions will provide enzymes which can function at dimin-
ished rate even in the presence of dissolved oxygen. One factor complicating the
determination of the effects of oxygen on nitrate reduction in wastewater treatment
systems is the necessity to grow the bacteria as flocculent cultures or as biofilms.
Because diffusion is the only mechanism supplying oxygen to the bacteria in the
interior of a floc particle or biofilm, some bacteria may be in an environment com-
pletely devoid of oxygen even when oxygen is present in the bulk liquid.*®

Because of the complexity associated with the effects of dissolved oxygen on
anoxic growth of heterotrophic bacteria, and because all effects have not been clearly
defined, relatively simple models have been used to express them.'**** A popular
approach has been to use Eq. 3.46 to depict the simultaneous effects of organic
substrate (Ss), and nitrate (Sxo) on p and to add a third term which diminishes . as
the dissolved oxygen concentration, So, increases:

- (s (eess) (s
H=HEAK + Ss) \Kwo + Swo/ \Kio + So (3.48)

The third term is the function most commonly used to depict the effects of a classical
noncompetitive inhibitor as modeled in enzyme kinetics.'* The parameter Ky, is the
inhibition coefficient for oxygen.

Implications of Multiple Nutrient Limitation. Biochemical operations are de-
signed on the premise that there is a functional relationship between the specific
growth rate of biomass and the concentration of the growth-limiting nutrient in a
bioreactor. Because of that relationship, if engineering control can be exerted over
the specific growth rate, it will be possible to control the concentration of the growth-
limiting nutrient leaving the bioreactor. This can only be achieved, however, if the
nutrient the engineer wishes to control is the growth-limiting one. If the design
objective is the removal of soluble organic matter, then all other nutrients must be
supplied in excess. Or, if the goal is to remove nitrate-N by allowing it to serve as
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the terminal electron acceptor, then it should be made rate limiting at the appropriate
place in the process. A clear definition of the objective to be met must be combined
with knowledge of the concentrations of the various constituents in the wastewater
to ensure that the resultant biochemical operation can indeed meet that objective.
Because oxygen is a gas of very low solubility, it must be supplied continuously
to aerobic systems and the concentration in solution will depend on the relative rates
of supply and utilization. Furthermore, because oxygen transfer is one of the major
costs associated with aerobic wastewater treatment, it is uneconomic to oversize the
oxygen delivery system. As a consequence, it is not uncommon for the oxygen
concentration to decrease sufficiently to make Si /(Ko + So) < 1.0 (where K, is the
half-saturation coefficient for dissolved oxygen). Thus, it would be instructive to
examine the impact of this occurrence. Figure 3.3 illustrates the simultaneous limi-
tation of the specific growth rate of autotrophic nitrifying bacteria by ammonia (the
electron donor) and oxygen (the electron acceptor) using typical parameter values.
These bacteria were chosen because they are more sensitive to dissolved oxygen
concentration than heterotrophic bacteria, (Kou < Ko 4, Where the subscripts H and
A signify heterotrophic and autotrophic bacteria, respectively). Examination of Figure
3.3 reveals two things. First, if we could operate a bioreactor in a way that maintained
a constant specific growth rate, decreasing the oxygen concentration in the bioreactor
would cause the ammonia concentration to increase. Second, decreasing the oxygen
concentration is analogous to decreasing p. for the bacteria. This can also be seen
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Figure 3.3 Double Monod plot showing the effects of both ammonia nitrogen and dissolved
oxygen concentrations on the specific growth rate of autotrophic nitrifying bacteria. The pa-
rameter values given were used to construct the curves with Eq. 3.46.
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by examining Eq. 3.46. The consequence of this is discussed in more detail in Chap-
ter 6, but suffice it to say now that a decrease in j. makes it more difficult for the
autotrophic bacteria to compete for space in the bioreactor.

Both nitrogen and phosphorus are required for the synthesis of new biomass.
If those proper quantities are not present, balanced biomass growth cannot occur and
treatment performance will be impaired. Thus, care must be exercised to provide
sufficient quantities. We have just seen, however, that if the concentrations of essen-
tial nutrients are very low in a bioreactor they can become rate limiting, which is
undesirable when the treatment objective is removal of organic matter. This means
that the concentration of nitrogen or phosphorus supplied to a bioreactor must be
sufficiently high to meet the synthesis needs of the biomass as defined by stoichi-
ometry while leaving enough residual in solution to prevent their concentrations from
being rate limiting. Goel and Gaudy® determined that Ks for ammonia nitrogen
during normal heterotrophic growth lies between 1.5 and 4.0 mg/L as N. Using 0.50
hr! as a representative value for [, it can be shown that if the influent nitrogen
concentration exceeds the stoichiometric requirement by 1.0 mg/L as N, nitrogen
will not be rate limiting to heterotrophic biomass at the specific growth rates normally
employed in wastewater treatment. Although some work has been done on kinetic
limitation of heterotrophs by phosphorus, the results are not as clear as those with
nitrogen. Attempts to measure the limiting phosphorus concentration in both pure
and mixed microbial cultures found it to be too low to detect with the techniques
available at the time.!”” Consequently, if the concentration of phosphorus in the
influent exceeds the stoichiometric amount by a few tenths of a mg/L as P, phos-
phorus should not be rate limiting. In some biochemical operations, the microorgan-
isms pass through a growth cycle, and nutrients will be taken up in one phase and
released in another. To prevent nutrient limitation during the phase of nutrient uptake,
the amounts presented above should be in excess of the maximum quantity removed,
not the net amount as determined by the final effluent.

3.2.10 Representative Kinetic Parameter Values for
Major Microbial Groups

Aerobic Growth of Heterotrophic Bacteria. The values of the parameters Ly
and K are very dependent on the organism and substrate employed. If an axenic
bacterial culture is grown on each of several substrates under fixed environmental
conditions, the values of ju, and Ks will vary from substrate to substrate. Likewise,
if the same substrate is fed to each of several pure cultures, the values of Py and K
will depend on the species of organism. This makes it very difficult to generalize
about parameter values and care should be exercised in the use of values considered
to be typical. It can be stated, however, that readily biodegradable substrates are
characterized by high values of fuy and low values of K, whereas slowly biode-
gradable substrates have low iy values and high K values. For example, benzoic
acid had [iy values between 0.61 and 0.64 hr™! and K values between 4.2 and 5.8
mg/L as COD, whereas 2-chlorophenol had values of 0.020-0.025 hr ' and 16—-17
mg/L as COD for the two parameters.”” Even lower Kg values have been reported
for very easily degradable substrates, such as biogenic materials like carbohydrates
and amino acids, with values as low as 0.2 mg/L for galactose and 0.5 mg/L for






