ANAEROBIC PROCESSES

- 1. General Nature of Anaerobic Operations
 - a. H______ of insoluble organic matter (Reaction 1)
 - C carried out by hydrolytic (and other) extracellular enzymes (hydrolases, cellulases, amylases, and proteases)
 - C extracellular enzymes are produced by the f bacteria
 - the f
 bacteria

 C
 large soluble molecules are cleaved to enable t

 into cell
 - b. A ______ acid forming phase (facultative microbes can withstand oxygen)
- Step 1 Hydrolysis Reactions
- C breakdown of particulate and high molecular weight organics into soluble organics and long chain volatile fatty acids.
- i. f_____ reactions (Reaction 2) in which organic compounds serve as both e______ a____ and donors
 - C principal products are intermediary degradative products such as p______ and butyric acids, and methane precursors, a_____ acid and molecular hydrogen, H₂.
 - C H₂ production originates from the dehydrogenation of p _____ and is not the primary producer of H₂ in anaerobic processes.
- ii. o______ of volatile and long chain fatty acids (Reactions 3 & 4) produces most of the H₂ through the transfer of electrons from NADH

Step 2 - Acid Forming Phase

- C fermentative reactions produce short chain volatile fatty acids (VFA's), acetic acid, and some H_2 .
- C the breakdown of fatty acids during anaerobic oxidation results in most of the H_2 produced.

to hydrogen ions. This has been termed anaerobic o______ and is inhibited by high partial pressures of _____ (whereas production of H_2 from pyruvate is not). C production of H_2 is significant because it represents the major loss of COD

- from anaerobic treatment systems (i.e., COD leaves the system as a gas)
- C H₂ can be combined with CO₂ by hydrogen o_____ a_____ to form acetic acid (Reaction 5), but this a

relatively insignificant reaction.

iii. m______ - methane forming phase (strict anaerobes) products of a______ are acetic acid and H_2 which are used by m______ bacteria to produce methane and CO_2 .

Step 3 - Methane Forming Phase

- C aceticlastic methanogens split acetic acid into methane and CO_2 .
- C hydrogen oxidizing methanogens combine hydrogen and CO_2 to produce methane.
- C a methanogens split acetic acid into methane and CO_2 (Rxn 6): H₃CCOOH ! $CH_4 + CO_2$
- C H₂ o methanogens oxidize hydrogen and reduce CO₂ to produce m (Reaction 7): $4H_2 + CO_2$! $CH_4 + 2H_2O$

Intermediates

- v_____ f____ a_____ measure of acids to alkalinity is a useful process
- indicator (should be < 0.1 for mesophilic systems and < 0.4 0.5 for thermophilic systems)
- a______ should be very ;low for a well functioning anaerobic process
 - about 70% of CH_4 is from acetate (aceticlastic methanogens)
- both acetate and propionate follow A_____kinetics
- p_____ may account for about 20% of CH₄ produced
 - broken down to acetate and H_2
 - low propionate levels are indicative of a well functioning process
 - $-H_2$ will inhibit propionate conversion (product inhibition)
 - acetate will inhibit propionate conversion
 - -s considerations: for low H₂ concentrations need hydrogen oxidizing
 - methanogens in close proximity to hydrogen producers
 - propionate is inhibitory at high concentrations (5,000 8,000 mg/L)
- u_____ form most inhibitory
- H_____, H_2
 - very insoluble H= $8 \cdot 10^{-4}$ M/atm (1.4 mg/L @ 35 deg C)
 - if need <100 ppm H_2 and average d_____ between bacteria is 100 μ there will be
 - less than 1 molecule of H₂ between every two bacteria
 - much of H_2 f_____ can not be measured due to
 - interspecies hydrogen transfer
 - spatial considerations have been overcome by
 - systems with dense biofilms and granules
 - hydrogen may not be in equilibrium w/ bulk liquid or gas phase
 - difficult to measure concentration and flux
 - may be useful as a p_____ indicator
- Anaerobic toxicity assay
 - use serum bottles, place e_____ substrate (e.g.,
- acetate or ethanol) and biomass
 - measure gas production as a function of initial substrate concentration
 - can calculate EC_{50} : concentration that causes 50% inhibition

