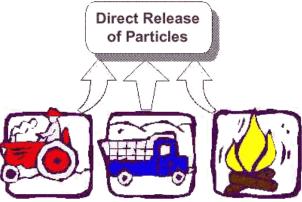
Air Pollution

Seven Main Air Pollutants of Concern:

- 1. S_____Oxides (SO_x) 2.
- 3.
- 4.
- O_____ N_____Oxides (NO_x) Carbon M_____Oxides (NO_x) Carbon M_____Oxides (NO_x) Volatile O_____Compounds (VOCs) (more university other inorganic metals, radon) 5.
- 6.
- L (mercury, other inorganic metals, radon) 7.


Particulates:

- released d_____ into the air
 largely a result of s_____ sources
 a nearly ubiquitous u_____ pollutant.

"Although particulate levels in North America and Western Europe rarely exceed 50 micrograms of particulate matter per cubic meter ($\mu\mu g/m^3$) of air. levels in many Central and Eastern European cities and in many developing nations are much higher, often exceeding 100 μ g/m³

(http://www.wri.org/wr-98-99/urbanair.htm)."

http://www.epa.gov/air/urbanair/pm/what1.html

Size of Particulates:

 $-PM_{2.5-100}$: 2.5 to 100 μ in diameter, usually comprise s _____ and d ____t from industrial processes, agriculture, c_____, and road traffic, p_____ and other natural sources. $-PM_{25}$: particles less than 2.5 μ in diameter generally come from combustion of f _____ fuels.

- vehicle exhaust s_____, which is often coated with various chemical contaminants - fine sulfate and nitrate a ______ that form when SO2 and nitrogen oxides
 - condense in the atmosphere.

- largest source of fine particles is c -fired power plants, but auto and diesel e are also prime contributors, especially along busy transportation

corridors.

Health Effects:

- s_____ particulates most damaging (PM_{2.5})
 PM_{2.5} aggravate existing h_____ and lung diseases
- changes the body's defenses against i_____ materials, and damages l_____ tissue.
- e_____ children and those with chronic lung or heart disease are most sensitive
- lung impairment can persist for 2-3 weeks after e_____ to high levels of PM_{2.5}
- c carried by particulates can also be toxic

National Ambient Air Quality Standards (NAAQS)

Criteria Pollutants	Standard Type	Avg. Time	Conc.	Health Risks and Concerns	Anthropogenic Sources	Natural Sources	
Carbon monoxide	Primary	8 h 1 h	9 ppm 35 ppm	carboxy-hemoglobin (blood)	incomplete combustion from mobile and stationary sources	intermediate in breakdown of methane by hydroxyl radicals (OH·)	
Hydrocarbons (measured as CH ₄)	Primary	3 h	240 ppb	photochemical smog	incomplete combustion from mobile and stationary sources	see graph	
Lead	Primary	24 h 3 month	18 ppb 6 ppb	CNS	leaded gasoline (obsolete?), smelters and refineries	volcanic activity and soils	
Nitrogen dioxide	Primary	annual 1 h	53 ppb 250 ppb	health risks, visibility (NO_2 has a brown color)	high temperature combustion	bacterial processes in soil release nitrous oxide N ₂ O	
Ozone	Primary	1 h 8 h	120 ppb 80 ppb	eye irritation, breathing difficulties	formed in nitrogen oxide photolytic cycle (NO_X + sunlight)		
Sulfur dioxide	Primary	annual 24 h	30 ppb 140 ppb	respiratory disease	- sulfur in fuel	sulfur released in biological processes	
Sulfur dioxide	Secondary	3 h	500 ppb	plant damage, material damage			
Total suspended particulates (TSP)	Primary	annual 24 h	75 μg/m³ 150 μg/m³	visibility and respiratory effects	combustion of fossil fuels and industrial activity	soil, sea salt, sand, forest fires, volcanoes	
Particulates (PM ₁₀)	Primary	annual 24 h	50 μg/m ³ 365 μg/m ³	visibility and respiratory effects			
Particulates (PM _{2.5})	Primary	24 h	65 µg/m ³	visibility and respiratory effects			

Sulfur Oxides (SO_x, mainly SO₂)

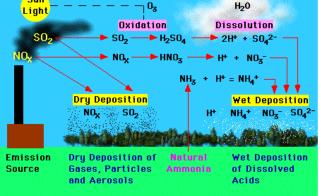
- emitted largely from burning c , high-sulfur
- o____, and d_____ fuel.
- usually found in association with p

SO2 is the p for fine sulfate particles (separating _ the health effects of these two pollutants is difficult)

- SO₂ and particulates make up a major portion of the pollutant l_____ in many cities, acting both separately and in c to damage health.

- concentrations are higher by a factor of in a number of cities in Eastern Europe, Asia, and South America, where residential or industrial coal use is still prevalent and diesel traffic is heavy

major component of a _____ r ____


Health Effects:

SO₂ affects people q_____, usually _ within the first few minutes of e

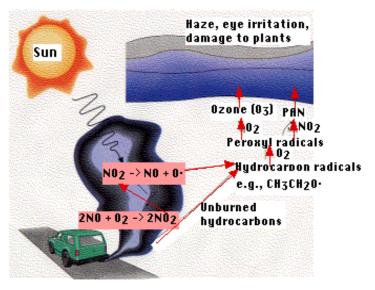
SO₂ exposure can lead to the kind of a health effects typical of particulate pollution.

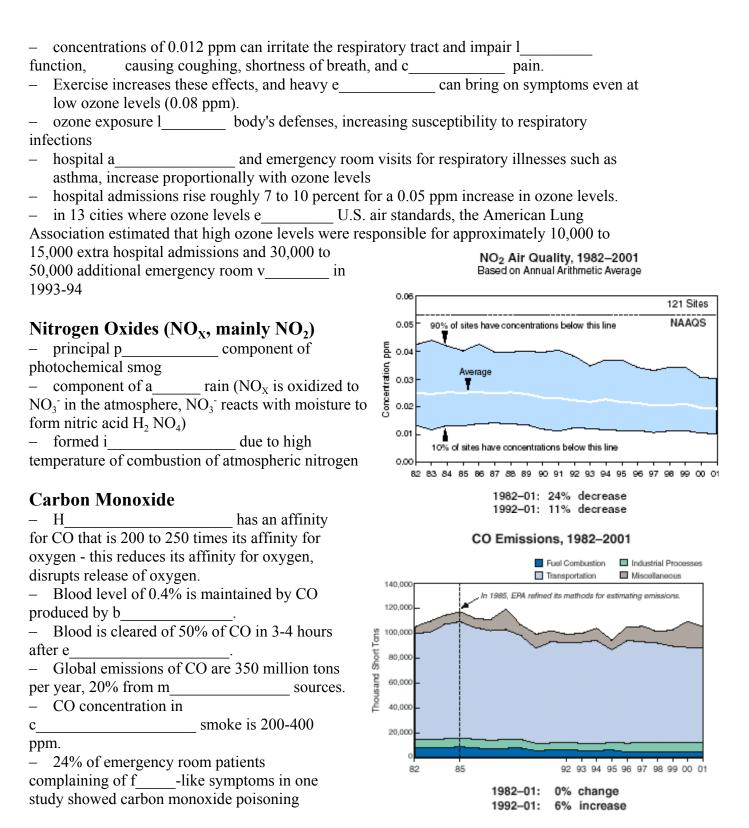
- Exposure is linked to an increase in

h_____ and deaths from respiratory and cardiovascular causes, especially among a_____ and those with preexisting r_____ diseases

- severity of these effects increases with rising SO₂ levels, and e_____ enhances the severity by increasing the volume of SO₂ inhaled and allowing SO₂ to penetrate deeper into the respiratory t

- Asthmatics may experience w_____ and other symptoms at much lower SO₂ levels than those without asthma.


When o______ is also present, asthmatics become even more sensitive to SO₂ indicating the potential for s effects among pollutants


Ozone

- major component of p_____smog formed when N_____ from fuel combustion
- react with V_____ s_____ and heat stimulate ozone formation, peak levels occur in the S _____
- w in cities in Europe, North America, and Japan as auto and industrial emissions have increased. Many cities in _____ countries also suffer from d

high ozone levels

- powerful o_____, can react with nearly any biological tissue.

Volatile Organic Compounds (VOCs)

- contribute to o_____ generation
- many are subject to NESHAPS (benzene from gasoline vapors)

significant i ______ emissions (e.g., perchloroethylene from d______

cleaners)

many are c_____ or suspected carcinogens

ACID RAIN

What is acid rain?

- More accurate term may be acid d
- Occurs in two forms
 - w_____ deposition (acidic rain, fog, and snow)
- d_____ deposition (acidic gases and particles)
- Principal c_____
- $\begin{array}{c} Principal c \\ About \\ of SO_x and \\ of NO_x comes from \\ \hline \\ Combustion \\ \hline \\ Combus$ power plants (most are coal burning)

How do we measure?

- pH of "natural" rain water is _____ (pK_{a1} H₂CO₃ is 6.35)
- m by two networks, both supported by EPA
 - The National Atmospheric Deposition Program measures w deposition, and its Web site (http://nadp.sws.uiuc.edu/) features maps of pH
 - ► The Clean Air Status and Trends Network (CASTNET) measures d deposition (http://www.epa.gov/castnet/)

Effects of acid rain:

- damage to forests and soils, fish and other living things, materials, and human health.
 - ► acidification of 1 and s

In a National Surface Water Survey (NSWS)

- effects of acidic deposition in over 1,000 lakes larger than 10 acres and in thousands of miles of streams believed to be sensitive to a

- acid rain caused acidity in _____ percent of the acidic lakes

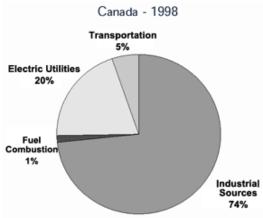
- acid rain caused acidity in about percent of the acidic streams

– U.S. regions containing many of the s w sensitive to acidification include:

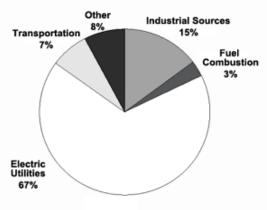
- the Adirondacks and Catskill Mountains in New York state.

- the mid-Appalachian highlands along the e

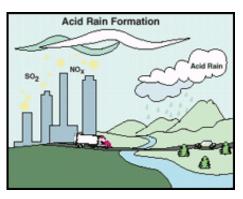
- the upper M , and mountainous areas of the Western United States.


- In areas like the Northeastern United States, where s buffering capacity is poor, some lakes now have a pH value of less than

- One of the most acidic is Little Echo Pond in Franklin, NY with a pH of


- also a problem in lakes smaller than 10 acres that were not included in the NSWS (may increase the number up to f - fold).

approximately _____ percent of sensitive lakes in the Adirondacks are at risk of e_____ acidification (brief periods of low pH)


low b______ streams: ______ of the streams in the Mid-Atlantic Coastal Plain

United States - 1998

http://www.ec.gc.ca/acidrain/acidfact.html

are acidic, in the New Jersey Pine Barrens, over percent of the streams are acidic (highest rate of acidic streams in the nation), and over of the streams in the Mid-Atlantic Highlands (mid-Appalachia) are acidic, primarily due to acidic deposition.

• Canadian government has estimated that lakes in eastern Canada are

acidic.

Affects Fish and Aquatic Species

- acid rain causes a c_____ of effects that harm or k individual fish, reduce fish p numbers. e_____ fish species, and decrease b
- increased a levels cause chronic stress that may not kill individual fish, but leads to lower body weight and smaller size and makes fish less able to compete for food and habitat.
- generally, the y_____ of most species are more sensitive to environmental conditions than adults. At pH 5, most fish e _____ cannot hatch. At lower pH levels, some adult fish die.

Tree and Forest Damage

 damage of trees at high e _____ (for example, red spruce trees above 2,000 feet) and many sensitive forest soils.

Water Quality Impacts

▶ n impacts on water quality due to eutrophication (o depletion,

a_____ blooms, d_____ in the health of fish and shellfish, loss of s_____ beds and c_____ reefs, and ecological changes in food webs): 10-45 percent of the nitrogen produced by various human activities that and coastal e_____ is transported a is transported a % of nitrogen in the Chesapeake is transported and reaches e deposited via the atmosphere. Bay comes from atmospheric deposition.

Materials and Building Decay

- a_____ the decay of building materials and paints, ► including irreplaceable buildings, statues, and sculptures that are part of our nation's cultural heritage.
- ► acid rain can s automotive coatings
- Acid rain and the dry deposition of acidic particles contribute to the c_____ of metals (such as bronze) and the deterioration of paint and s_____ (such as marble and limestone).
- some car manufacturers use acid-resistant paints, at an average cost of \$ for each new vehicle (\$61 m total/y)

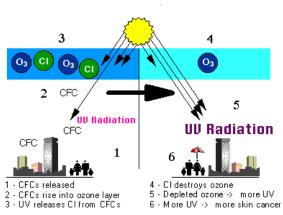
	PH 6.5	eH 6 .0	PH 5.5	PH 5.0	PH 4.5	PH 4.0
TROUT						
BASS						
PERCH						
FROGS						
SALAMANDERS						
CLAMS						
CRAYFISH						
SNAILS						
MAYFLY						

Air Quality Concentrations				
1981–00	50% decrease			
1991–00	37% decrease			
1999–00	4% decrease			
Emissions				
1981–00	27% decrease			
1991–00	21% increase			
1999–00	6% increase			
Worth No	ting:			
SO2 concentrations have				
been reduced by over 50%				

been reduced by over 50% over the past 20 years (1982-2001) and approximately 35% over the more recent 10-year period (1992-2001) nationwide. Reductions in SO2 concentrations since 1990 are due, in large part, to controls implemented under EPA's Acid Rain Program beginning in 1995.

► Affects visibility (as in photochemical smog from

NO_x) Sulfate particles account for


percent of the visibility reduction in the eastern part of the United States

Acid Rain Reductions

• EPA's Acid Rain Program caps SO₂ emissions from power plants at million tons/yr

► 1990 Acid Rain Program under the Clean Air Act set goal to achieve reductions of million tons of sulfur dioxide (SO₂) and _____ million tons of nitrogen oxides (NO_x) .

• When fully implemented by the year 2010, the

public health benefits of the Acid Rain Program are estimated to be valued at \$ billion annually, due to decreased m , h admissions, and emergency room visits.

(for more details see: http://www.epa.gov/airmarkets/progress/arpreport/acidrainprogress.pdf)

Ozone Depletion

% of the planet's ozone is in the ozone layer in the statosphere (10-50 kilometers above the Earth's surface)

- Stratospheric ozone is a naturally-occurring g that filters the sun's ultraviolet (UV) radiation

- d ozone layer allows more UV to reach the Earth

overexposure to UV rays can lead to s______, and weakened systems. i

Increased UV can also lead to reduced c yield and disruptions in the m _ food chain.

- ozone destruction occurs when the release of c_____ (CFCs) and other

ozone-depleting substances (ODS), widely used as refrigerants, insulating foams, and solvents.

CFCs are heavier than air, can take as long as ______ years to reach the stratosphere
 Stratospheric measurements are made from b______, aircraft, and satellites.

- When CFCs reach the stratosphere, the U from the sun causes them to break apart and release c atoms which react with ozone, starting chemical cycles of ozone destruction that deplete the ozone layer.

One chlorine atom can break apart more than _____ ozone molecules.

Other chemicals that damage the ozone layer include:

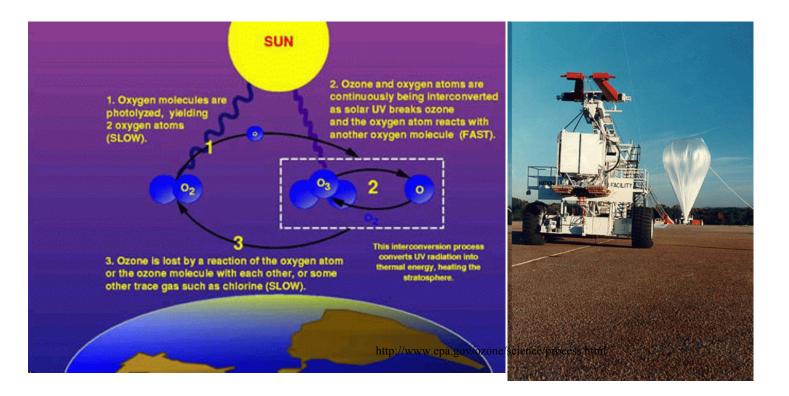
m_____ bromide (used as a pesticide)

- h (used in fire extinguishers)

– m chloroform (used as a solvent in industrial processes).

As methyl bromide and halons are broken apart, they release bromine atoms, which are 40 times more destructive to ozone molecules than chlorine atoms.

- Halon-1301 has _____ times depleting potential as CFC-11


- total chlorine is d_____, while bromine from industrial halons is increasing

v_____ and o_____ release large amounts of chlorine, the chlorine from these

sources is easily dissolved in water and washes out of the atmosphere in rain.

CFCs are not broken down in the lower atmosphere and do not d in water.

- the increase in stratospheric c______ since 1985 matches the amount released from
- CFCs and other ozone-depleting substances produced and released by human activities.
- In 1978, the use of CFC p______ in spray cans was banned in the U.S.
- In the 1980s, the Antarctic "o_____hole" appeared and an international science
- assessment more strongly linked the release of CFCs and ozone depletion.
- 1987, the Montreal Protocol was signed and the signatory nations committed themselves to a
- r_____ in the use of CFCs and other ozone-depleting substances.
- Since that time, the treaty was amended to ban CFC production after 1995 in
- d_____ countries, and later in developing countries.
- Today, over 160 countries have signed the treaty. Since January 1, 1996, only re______and stockpiled CFCs have been available for use in developed countries
- This production phaseout is possible because of efforts to ensure that there will be
- s_____ chemicals and technologies for all CFC uses.
- but provided that we stop producing ozone-depleting substances, n_____ ozone production reactions should return the ozone layer to normal levels by about ______

