
Completely Mixed Activated Sludge (CMAS) Bioreactor Design Equations

Mass Balance:

Biomass:

$$QX_O + V\left(\frac{\mu_{\max} SX}{K_S + S} - k_d X\right) = (Q - Q_w)X_e + Q_w X_w$$

Substrate:

$$QS_O - V\left(\frac{\mu_{\max} SX}{Y(K_S + S)}\right) = (Q - Q_w) S_e + Q_w S_w$$

where Q, Q_w = influent flow and waste flow, respectively, m^3/d

V = volume of aeration basin, m³

: $_{max}$ = maximum specific growth rate coefficient, h^{-1}

 K_S = half saturation coefficient, mg/L

 k_d = decay coefficient, h^{-1}

 X_0 , X, X_e , X_w = biomass in influent, bioreactor, effluent, and waste, mg/L as MLVSS

S = soluble substrate concentration in bioreactor, mg/L as BOD or COD

 S_{O} = influent substrate concentration, mg/L as BOD or COD

Y = biomass yield, mg biomass formed/ mg substrate utilized (mg VSS/ mg BOD)

Assumptions:

1. Influent and effluent _____ concentration is negligible

2. Aeration basin is a _____ CSTR, $S = S_w = S_e$

3. All reactions occur in _____ basin

Then:

$$\frac{\mu_{\max} S}{K_S + S} = \frac{Q_w X_w}{VX} + k_d \quad ; \quad \frac{\mu_{\max} S}{K_S + S} = \frac{QY}{VX} (S_O - S)$$

Observe:

$$\frac{Q}{V} = \frac{1}{\theta}$$
 ; $\frac{Q_w X_w}{VX} = \frac{1}{\theta_c}$

Where 2 = the hydraulic retention time, HRT, and $2_c =$ the solids residence time, SRT. This results in the following design equations:

$$S = \frac{K_S \left(1 + k_d \theta_c\right)}{\theta_c \left(\mu_{\text{max}} - k_d\right) - 1} \quad ; \quad \theta_c = \frac{K_S + S}{S \left(\mu_{\text{max}} - k_d\right) - K_S k_d} \quad ; \quad X = \frac{\theta_c Y(S_O - S)}{\theta \left(1 + k_d \theta_c\right)}$$

The minimum soluble BOD concentration that can be achieved as $2_c \div 4$:

$$S_{\min} = \frac{K_S k_d}{\mu_{\max} - k_d}$$

The minimum 2_c achievable as: \div : $_{max}$:

$$\theta_{c_{\min}} = \frac{K_S + S_O}{S_O \left(\mu_{\max} - k_d\right) - K_S k_d}$$

Steps for Activated Sludge Design

- 1. Establish effluent soluble BOD₅ allowable to meet BOD₅ and SS effluent limits.
- 2. Determine what 2_c is required to meet the effluent soluble BOD₅ allowable.
- 3. Solve for the mixed liquor volatile suspended solids, MLVSS, concentration given a particular hydraulic residence time, 2. Or solve for 2 given a particular MLVSS.
- 4. Calculate the return activated sludge (RAS) flow, Q_r , and concentration, X_r .

$$X_r'Q_r = X'(Q_r + Q)$$
 ; $X_r' = 10^6/SVI$

where X' = MLSS, mg/L (X' typically is approximately 1.2"X)

 $X_r' = RAS$ concentration, mg/L

 $Q_r = RAS \text{ flow rate, } m^3/s$

Find X_r using the sludge volume index, SVI, from the following figure:

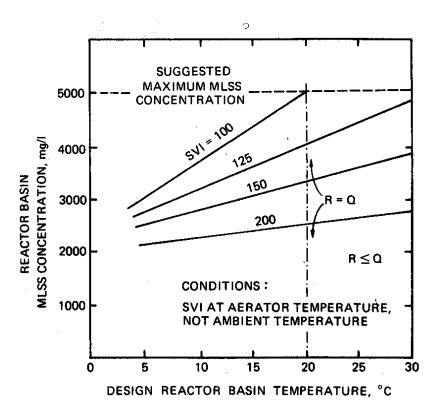


FIGURE 14-10. Recommended maximum MLSS design versus temperature and SVI.

5. Sludge production can be estimated as follows:

$$P_X = Y_{OBS} Q (S_O - S) \frac{kg}{1000 g}$$

where:

 P_X = sludge production, kg/d

 Y_{OBS} = observed growth yield, mg biomass formed, VSS/ mg

BOD₅ utilized

 $Q = influent flow, m^3/d$

 $S_0 = influent BOD_5$

 $S = effluent BOD_5$

Y_{OBS} can be estimated as:

$$Y_{OBS} = \frac{Y}{1 + k_d \cdot \theta_c}$$

6. Oxygen requirement for carbonaceous BOD removal can be calculated as:

$$O_2 req = \left(\frac{Q(S_O - S)}{f} \cdot \frac{kg}{1000 g}\right) - 1.42 \cdot P_X$$

where f = the conversion from BOD₅ to BOD₁, (0.45-0.68)

When nitrification is occurring the oxygen requirement can be calculated as:

$$O_2 \ req = \left(\frac{Q(S_O - S)}{f} \cdot \frac{kg}{1000 \ g}\right) - 1.42 \cdot P_X + 4.57 \ Q \left(N_O - N\right) \cdot \frac{kg}{1000 \ g}$$

where N_O and N are the influent and effluent NH₄-N concentrations, respectively.

7. Calculate the alkalinity consumed.

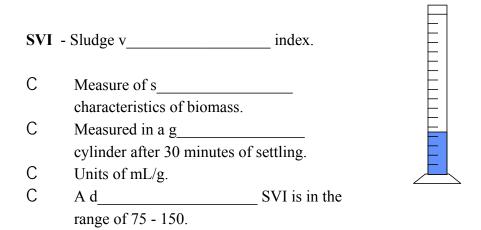
The conversion of NH₃-N to nitrate not only requires oxygen but it also consumes considerable amount of alkalinity (7.1 mg/L as CaCO₃ for every mg/L NH₃-N):

alk consumed (kg/d) = Q (N₀ - N) "7.1 mg/L as
$$CaCO_3/mg$$
 NH₄-N "(kg/1000 g)

8. **Settling Tank Design**

The design of primary and secondary settling tanks can be done on the basis of settling tests and/or established design criteria. In general, the design of tanks must meet established overflow rate and weir loading criteria.

10 State Standards Criteria


Criteria	Primary Settling Tanks		Secondary Settling Tanks	
Overflow Rate, m ³ /m ² @	Avg	Peak	Peak	
OR = Q/A	41	61	49	
Weir Loading, m ³ /m@	< 1 mgd	> 1 mgd	< 1 mgd	> 1 mgd
WL = Q/L	124	186	124	186

Activated Sludge Operational Considerations

An operator of an activated sludge plant is concerned with three things:

- 2.
- Sludge w _____ or solids inventory (2_c, F/M) 3.

These three objectives/operational parameters are interrelated. A good settling sludge will produce good effluent quality. Maintaining the proper solids inventory will produce a good settling sludge. Controlling 2_c will maintain the proper solids inventory.

Sludge Bulking

С	Sludge bulking is the condition where the SVI is h	and the suspended solids
	are not settling in the secondary settling tank.	
С	It is usually an indication of f	organisms - long string-like

organisms which outcompete the flocculent organisms because of their large surface area.

С	Filamentous	organisms	can b	e caused	by
		_			_

F/M Ratio

C The f_____ to m____ (F/M) ratio is an alternative control parameter to 2_c for the operation of an activated sludge plant.

$$\frac{F}{M} = \frac{Q S_O}{V X} = \frac{mg BOD_5/dD}{mg MLVSS}$$

Note: the F/M ratio is inversely proportional to 2_c .

C L	ow F/M ratios are typical in				
c	mixed				
	ctivated sludge (CMAS) systems.				
C C	CMAS systems, consequently, often have				
fil	ilamentous b				
p	roblems. Low F/M				
	Single Tank CMAS				
High	C By using a s , the F/M				
High F/M					
Selector	in the first compartment of an activated Low F/M sludge system can be increased, giving the				
	f microorganisms				
CMAS	S with Selector competitive advantage.				
	ARY OF ACRONYMS				
SRT	S retention time, also referred to as 2 _c . The SRT is the major				
	design variable for the activated sludge process. The longer the SRT, the lower the				
	effluent soluble BOD.				
MLSS	Mixed l suspended solids concentration. A measure of the				
	total solids (fixed solids plus volatile solids) in the activated sludge process.				
MLVSS	Mixed liquor v suspended solids concentration. A measure of				
	the volatile solids in the activated sludge process. The MLVSS concentration is				
	often used as an estimate of the biomass concentration.				
SVI	Svolume index. Used as a measure of settleability of solids				
	in the activated sludge process. SVI is determined by taking a sample of mixed				
	liquor from the aeration basin and letting it settle for 30 minutes. The volume of				
	solids after 30 minutes divided by the mass of solids equals the SVI (units of mL/g).				
F:M	Fto microorganism ratio. A low F:M ratio is desirable since in				
	will be an indication of good substrate removal. Low F:M ratios may promote the				
	growth of nuisance organisms, such as filamentous microorganisms, however.				
RAS	R activated sludge. This is the active biomass or sludge				
	returned to the aeration basin from the underflow of the secondary settling tank (or				
	clarifier).				