
Section 3.3
Complexity of Algorithms

Time Complexity: Determine the approximate number
of operations required to solve a problem of size n.

Space Complexity: Determine the approximate memory
required to solve a problem of size n.

Time Complexity

- Use the Big-O notation

- Ignore house keeping

- Count the expensive operations only

Basic operations:

• searching algorithms - key comparisons

• sorting algorithms - list component comparisons

• numerical algorithms - floating point ops. (flops) -
multiplications/divisions and/or additions/subtractions

Worst Case: maximum number of operations

Average Case: mean number of operations assuming an
input probability distribution

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 3.3

Prepared by: David F. McAllister TP 1 ©1999, 2007 McGraw-Hill

Examples:

• Multiply an n x n matrix A by a scalar c to produce
the matrix B:

procedure (n, c, A, B)
for i from 1 to n do

for j from 1 to n do
B(i, j) = cA(i, j)

end do
end do

Analysis (worst case):

Count the number of floating point multiplications.

n2 elements requires n2 multiplications.

time complexity is

O(n2)

or

quadratic complexity.

• Multiply an n x n upper triangular matrix A

A(i, j) = 0 if i > j

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 3.3

Prepared by: David F. McAllister TP 2 ©1999, 2007 McGraw-Hill

by a scalar c to produce the (upper triangular) matrix B.

procedure (n, c, A, B)
/* A (and B) are upper triangular */

for i from 1 to n do
for j from i to n do

B(i, j) = cA(i, j)
end do

end do

Analysis (worst case):

Count the number of floating point multiplications.

The maximum number of non-zero elements in an n x n
upper triangular matrix

= 1 + 2 + 3 + 4 + . . . + n

or

• remove the diagonal elements (n) from the total (n2)

• divide by 2

• add back the diagonal elements to get

(n2 - n)/2 + n = n2/2 + n/2

which is

n2/2 + O(n).

Quadratic complexity but the leading coefficient is 1/2

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 3.3

Prepared by: David F. McAllister TP 3 ©1999, 2007 McGraw-Hill

• Bubble sort: L is a list of elements to be sorted.

- We assume nothing about the initial order

- The list is in ascending order upon completion.

Analysis (worst case):

Count the number of list comparisons required.

Method: If the jth element of L is larger than the (j + 1)st,
swap them.

Note: this is not an efficient implementation of the
algorithm

procedure bubble (n, L)
/*

- L is a list of n elements
- swap is an intermediate swap location

*/

for i from n - 1 to 1 by -1 do
for j from 1 to i do

if L(j) > L(j + 1) do
swap = L(j + 1)
L(j + 1) = L (j)
L(j) = swap

end do
end do

end do

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 3.3

Prepared by: David F. McAllister TP 4 ©1999, 2007 McGraw-Hill

• Bubble the largest element to the 'top' by starting at
the bottom - swap elements until the largest in the top
position.

• Bubble the second largest to the position below the
top.

• Continue until the list is sorted.

n-1 comparison on the first pass

n-2 comparisons on the second pass

.

.

.

1 comparison on the last pass

Total:

(n - 1)+ (n - 2) + + 1 = O(n2)

or

quadratic complexity

(what is the leading coefficient?)

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 3.3

Prepared by: David F. McAllister TP 5 ©1999, 2007 McGraw-Hill

• An algorithm to determine if a function f from A to
B is an injection:

Input: a table with two columns:

- Left column contains the elements of A.

- Right column contains the images of the elements in
the left column.

Analysis (worst case):

Count comparisons of elements of B.

Recall that two elements of column 1 cannot have the
same images in column 2.

One solution:

• Sort the right column

Worst case complexity (using Bubble sort)

O(n2)

• Compare adjacent elements to see if they agree

Worst case complexity

O(n)

Total:

 O(n2) + O(n) = O(n2)

Can it be done in linear time?

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 3.3

Prepared by: David F. McAllister TP 6 ©1999, 2007 McGraw-Hill

