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Abstract. An analytical solution is presented for the electrical conductivity of a material
composed of spheroidal particles embedded in a matrix. The particles are arranged on a
simple-cubic lattice with their axes of rotation aligned with one of the lattice vectors. In this
arrangement, there are two independent components of the conductivity tensor; one for the
electric field applied parallel to the rotation axis of the spheroids and one for the electric field
applied perpendicular to this axis. Both components are calculated using a method in which
each particle is replaced by a singular multipole source which gives rise to the electric
potential in the interstitial domain. This potential can readily be written as a sum of spherical
harmonics but, in order to treat spheroidal particles, it is necessary to transform the solution
into one in terms of spheroidal harmonics. The calculation of the matrix elements required
for this transformation is described and the solution for each component of the conductivity
tensor is given in analytic form. Results are presented for various values of particle aspect
ratio, volume fraction and conductivity ratio between the two phases. Very good agreement is
observed with experimental data and the results of an independent calculation.

1. Introduction

Electrically conducting composite materials have a variety
of important applications such as electrostatic shielding of
electronic components and electrical stress relief in high-
voltage devices. For these applications, the composite is
typically formed by adding conducting particles to a polymer
with low conductivity. This results in a material which is
both electrically conducting and mechanically similar to the
polymer. In order to design composite materials for specific
applications, it is useful to be able to model the properties
theoretically, based on knowledge of the constituent phases
and their relative distribution.

The design of a composite material is usually a
compromise between the desire to raise the conductivity as
much as possible, and the need to retain flexibility so that
the material can be moulded or extruded. Types of filler
commonly used in practice are carbon-black particles, carbon
fibres and metal flakes or fibres. Adding increasing amounts
of filler has the effect of increasing the conductivity of the
composite, but consequently it also becomes less flexible.
At a certain threshold value of volume fraction of the filler,
the particles or fibres are sufficiently close-packed to form an
unbroken conducting pathway through the composite, and the
conductivity of the material increases sharply. The threshold
at which this occurs is known as the percolation threshold. A
way of maximizing the material conductivity while retaining
flexibility would be to control the arrangement of the filler
particles such that percolating networks form for relatively

low volume fractions. This is an ideal which is difficult to
achieve in practice.

An early model of the bulk conductivity of a composite
material was devised by Maxwell [1], who assumed that the
particles were well spaced in the matrix and did not interact
with one another. Using this assumption, each particle acts
as a dipole source and the following result is obtained

σ ∗ = 1− 3f
α − 1

α + 2
+O(f 2) (1)

which is independent of the size and spatial distribution of
the particles. In (1),σ ∗ is the ratio of the bulk conductivity to
that of the interstitial matrix,σ/σi , f is the volume fraction
of the particle phase andα is the ratioσp/σi , whereσp is the
conductivity of the particles. Equation (1) holds forf less
than about 0.3. In order to determineσ ∗ for larger values
of f , higher-order terms must be included in the calculation.
The higher-order terms typically depend on the size, shape
and distribution of the particles. In this paper, a method is
presented for calculatingσ ∗ up to orderf 14/3 for spheroidal
particles arranged on a simple-cubic lattice. Spheroidal
geometry has the advantage of being representative of some
useful limiting cases, approximating the behaviour of rods or
fibres and discs. There is good agreement with experimental
data and the results of an independent calculation, confirming
that the result is valid for volume fractions up to the limit in
which the particles nearly touch.
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2. Lattice model

A simple model of a composite material is one in which the
filler particles are arranged on the sites of a regular lattice.
Due to the periodic nature of the lattice, an infinite number of
particles is treated. This is a classical problem of theoretical
physics and has been considered by many authors using a
variety of methods. In one approach, Zuzovsky and Brenner
[2] replaced the particles by a singular multipole source
distribution located at their centres and determined a solution
for a simple-cubic lattice of spheres. Simple-cubic, body-
centred-cubic (bcc) and face-centred-cubic (fcc) lattices of
spheres have been treated by McPhedran, McKenzie and
Derrick [3, 4] by extending Rayleigh’s method [5] to include
the effects of multipoles of arbitrarily high order. Recently,
the lattice model has been generalized in a number of
ways. Sangani and Yao [6] have reduced the ordering in
the microstructure by distributingN spherical particles in a
cubic unit cell and replicating it to form an infinite simple-
cubic lattice with a quasi-random distribution of particles.
An orthogonal lattice of aligned spheroids has been treated by
Kushch [7], with some anisotropy in the material of the matrix
and the inclusions permitted. These methods are analytical
in nature and have the advantage of short computation times.
In this work, the multipole expansion method of Zuzovsky
and Brenner is adapted and applied to a simple-cubic lattice
of aligned spheroidal particles. Each particle is replaced by
a singular multipole source which gives rise to the electric
potential in the interstitial domain. The potential can readily
be written in terms of spherical harmonics but, in order
to treat spheroidal particles, it is helpful to transform the
solution into one in terms of spheroidal harmonics so that the
continuity conditions at the particle surface can be applied
in a straightforward manner. The matrix elements required
for this transformation are calculated and the coefficients in
the expansion determined by solving the resulting infinite
set of linear algebraic equations. It can be shown by using
Green’s theorem that only the first coefficient in the expansion
is required to calculate the bulk conductivity of the material.
This coefficient is determined by solving a truncated equation
set and the solution for each component of the conductivity
tensor is given in analytic form. There is no restriction on
the relative conductivities of the two phases; the conductivity
of the filler particles may be greater or less than that of the
matrix.

This calculation differs from that for the lattice of
spheroids given in [7] in the way that the infinite number
of particles is accounted for. In [7], an addition theorem
derived in the Russian literature is used to sum the effects
of particles arranged on a triple-periodic lattice. The
method adopted here, of representing each particle by a
multipole expansion and transforming the solution to deal
with spheroidal geometry, is currently restricted to the
simple-cubic array but lends itself to extension to more
general cases in which distributions of particle orientation,
size and shape can be considered.

The accuracy of this method depends on the number of
harmonics used in the expansion for the potential. For low
volume fractions, and/or a low conductivity ratio between
the phases, only a few terms are required to describe the field

accurately everywhere in the material. On the other hand,
when there is high contrast between the conductivity of the
phases, and when the particles approach one another closely,
higher-order terms are required. In principle, the method
given here can be made as accurate as desired by including
terms of sufficiently high order. The example solution given
later is of relatively low order, however, so there is some loss
of accuracy in certain cases.

The analytical approaches mentioned may be contrasted
with a purely numerical technique in which the composite
is reduced to an effective impedance network [8]. This
alternative scheme has the advantage of simplicity; the
partial differential equation governing the electric potential
is reduced by discretization to an equivalent of Kirchhoff’s
Laws for a square or cubic conductance network (square for a
two-dimensional (2D) array and cubic for three dimensions).
The accuracy of results obtained in this way depends on the
density of the network used to treat a single unit cell, and is
limited only by the available computing power and memory.

Another approach worthy of mention is the boundary
integral equation method. In [9], boundary integral equations
are derived from Green’s theorem and are solved for the local
field. Particular care is taken with the numerical evaluation of
the field in order to overcome the loss of accuracy associated
with traditional boundary-value methods when the volume
fraction is large. This is a powerful method with the ability to
deal with particles of arbitrary shape, possibly fused together,
as well as any type of lattice. The technique can also be
applied to treat a random distribution of inclusions.

As well as being suitable for calculating electrical
conductivity, these methods are equally valid for the
calculation of a number of other physical properties, for
example, thermal conductivity, magnetic permeability or
dielectric constant, due to mathematical equivalence in the
formulations.

3. Formulation

3.1. Constitutive relation

Consider a medium composed of spheroidal particles of
conductivity σp embedded in a matrix which fills the
interstices and has conductivityσi . The particles and matrix
are assumed to be homogeneous. The aim is to determine
σ = {σij }, the second-order tensor describing the effective
conductivity of the composite. This is done without loss
of generality by solving for the electric potential in the
medium when an electric field of unit magnitude is applied.
As a consequence of the linearity of this system, there
exists a linear macroscopic constitutive relation between the
macroscopic current density and electric field

〈J〉 = σ · 〈E〉. (2)

For a lattice of spheroids oriented like the one shown in
figure 1,σ has only two independent components

σ =
(
σxx 0 0
0 σxx 0
0 0 σzz

)
. (3)
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Figure 1. Prolate spheroid with axis of rotation parallel toz.

The problem of determiningσ can, therefore, be reduced
to two similar scalar problems in whichσxx and σzz are
determined for a unit electric field applied parallel tox and
then parallel toz

〈Jx〉 = σxx〈Ex〉 (4)

〈Jz〉 = σzz〈Ez〉. (5)

3.2. Laplacian problem

The basic equations governing steady-state flow are the
relation

Jm(r) = −σm∇8m(r) (6)

and the zero divergence of the current density

∇ · Jm(r) = 0 (7)

whereJm is the local current density vector,8m is the local
electric potential atr andm = i or p denotes values in the
interstitial or particle domains, respectively. Equations (6)
and (7) combine to show that the potential obeys the Laplace
equation

∇28m(r) = 0 (8)

everywhere.
If a uniform electric field is applied to the material, it

gives rise to a potential distribution with average gradient
〈E〉. The potential at any point in the composite can be
expressed

8m(r) = 8̆(r)− r · 〈E〉 (9)

where8̆(r) is a spatially periodic function

8̆(r) = 8̆(r + rn) (10)

and particles are located at lattice points defined by the
following set of position vectors

rn = n1a1+n2a2+n3a3 n1, n2, n3 = 0, 1, 2, . . . (11)

with (a1,a2,a3) a triad of basic lattice vectors characterizing
the unit cell. This system of equations possesses a unique
solution if either the macroscopic electric field〈E〉 or the
macroscopic current density〈J〉 is prescribed.

3.3. Multipole expansion

Equations (6)–(10) can be solved by analytically continuing
the interstitial fields into the interior of the space occupied
by the particles and replacing the particles themselves by
singular multipole source distributions located at their centres
[10]. The sum over all lattice sites is achieved using Fourier
analysis, following Hasimoto [11]. The details of this
development have been given previously [12] so only key
results are given here. This approach is distinct from that of
Kushch [7], in which the potential due to the infinite lattice
of particles is calculated by means of an addition theorem
established in Russian literature.

The periodic potential̆8 can be expressed as follows
[2, 11]

8̆ = 80 − 1

4π

∞∑
j=1

∇(2j−1)S(·)2j−1B(2j) · 〈E〉 (12)

where80 is a constant,∇(j) is the j th gradient polyadic
operator,(·)j is a j -fold inner product,B(j) is a constant
tensor of rankj and

S = 1

πτ0

′∑
m

e−2π ikm·r

k2
m

. (13)

In (13),τ0 is the volume of the unit cell and

km = 1

τ0
(m1b1 +m2b2 +m3b3)

m1, m2, m3 = 0,±1,±2, . . . (14)

with (b1, b2, b3) the basic vectors characterizing the unit cell
of the reciprocal lattice. The sum overm excludes the value
m = 0, as indicated by the prime. The functionS is the
periodic, singular solution of Laplace’s equation

∇2S = 4π

[
1

τ0
−
∑
n

δ(r − rn)
]
. (15)

In principle, one can proceed to solve in general terms
with the lattice described in (11), but here matters will be
simplified by treating the simple-cubic lattice.

The polyadic operator in (12),∇(j), regarded as a
Cartesian tensor, is completely symmetric in all its indices.
This same symmetry property may be ascribed toB(j)
and, further, the Cartesian tensorB(j) possesses symmetry
properties based on the fact that its components must remain
invariant under group operations appropriate to the symmetry
of the cube. It is found thatB(2) possesses only one
independent component andB(4) only two, for example.
Continuing in this manner it can be established that (12) may
be written [2]

8̆ = 80 − 1

4π
B∇S · 〈E〉 (16)

with B the partial differential operator

B =
∞∑
m=0

∞∑
n=0

∞∑
p=0

bmnp
∂2(m+n+p)

∂x2m∂y2n∂z2p
. (17)
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Thebmnp are scalar coefficients to be determined by applying
the continuity conditions at the particle–matrix interface. As
shown in section 4, the bulk conductivity can be calculated
from b000.

In order to apply the continuity conditions at the particle
surface in a straightforward way, (16) will be written in terms
of spheroidal harmonics. An important step in this process
is to use an expansion ofS in spherical harmonics to write
(16) first as a sum of spherical harmonics. Expanding about
r = 0 [11]

S = 1

r
−c+

2πr2

3τ0
+
∞∑
n=2

m6n/2∑
m=0

anmr
2nP 4m

2n (µ) cos 4mφ (18)

in which c is a constant andx, y and z are Cartesian
coordinates parallel to the axes of cubic symmetry

x = r sinθ cosφ y = r sinθ sinφ z = r cosθ
(19)

andµ = cosθ . Combining (9), (16) and (19) gives, for an
electric field applied parallel to thez axis

8i = 80 − 〈E〉
(

1

4π
B
∂S

∂z
+ r cosθ

)
. (20)

The Cartesian derivatives ofS which appear in (20) may be
evaluated by transforming to derivatives with respect tor, µ
andφ using the following relations ∂

∂x
∂
∂y
∂
∂z



=


√

1− µ2 cosφ − 1
r
µ
√

1− µ2 cosφ − sinφ

r
√

1−µ2√
1− µ2 sinφ − 1

r
µ
√

1− µ2 sinφ cosφ

r
√

1−µ2

µ 1
r
(1− µ2) 0


×
 ∂

∂r
∂
∂µ
∂
∂φ


and then using the relations between contiguous Legendre
functions given in [13, section 3.8]. Taking derivatives ofS

gives, to orderr7

8i = 80 + 〈E〉rP1− 〈E〉
4π

{
b000

r2

[
− P1 +

4πr3

3τ0
P1

+4a20r
5P3 + 6a30r

7P5 + 10a31r
7P 4

5 cos 4φ +O(r9)

]
+
b001

r4
[−6P3 + 24a20r

5P1 + 120a30r
7P3 +O(r9)]

+
b110

r6
[−15P5 + P 4

5 cos 4φ + 5130a30r
7P1 +O(r9)]

+
b002

r6
[−120P5 + 720a30r

7P1 +O(r9)] + O(r9)

}
. (21)

In (21), the argument of the Legendre functions isµ and the
relation [14]

a30/a31 = −360 (22)

has been used. Further, an algebraic error in Zuzovsky and
Brenner’s paper [2, equation (59)], has been corrected.

3.4. Harmonic expansion

In the spheroidal coordinate system, spheroidal surfaces are
surfaces of constantξ . The polar angle is related toη and
the azimuthal angle isφ. In general, harmonic solutions of
Laplace’s equation in a spheroidal system take the form of
combinations of Legendre functions of degreen and order
m wheren andm are integers such thatm = 0, . . . , n. For
a simple-cubic lattice of spheroids whose axes of rotation
(parallel toz) coincide with one of the lattice vectors, the
azimuthal symmetry dictates that the order of the Legendre
functions must be an integral multiple of four. If the electric
field is also applied parallel to this axis, the potential8 is
odd in the polar variable and consequently, the degree of the
Legendre functions is odd. In the case of a prolate spheroid,
the potential in the interstitial domain can be written

8i = 80 + 〈E〉
∞∑
n=1

m<n/2∑
m=0

cnm[P 4m
2n−1(ξ)P

4m
2n−1(η)

+L4m
2n−1Q

4m
2n−1(ξ)P

4m
2n−1(η)] cos 4mφ (23)

where

Lts =
1− α

α[Qt
s(ξ0)/P ts (ξ0)] − [Qt

s(ξ0)′/P ts (ξ0)′]
. (24)

In these equations,P ts andQt
s are Legendre functions of the

first and second kinds, respectively. Thecnm are unknown
coefficients. The coefficientsLts have been determined by
applying the conditions that the tangential electric field and
normal current density are continuous at the particle–matrix
interface. Coefficients in an expansion for8p are eliminated
to yield (23). The expansion for8p contains only growing
harmonics, which are of the formP 4m

2n−1(ξ)P
4m
2n−1(η), since

the potential in the particle interior is finite at its centre. The
coordinateξ0 denotes the surface of the particle and the prime
indicates the derivative normal to the surface, i.e.

Qt
s(ξ0)

′ ≡ dQt
s(ξ)

dξ

∣∣∣∣
ξ=ξ0

.

For an electric field applied perpendicular to the axis
of rotation of the spheroids, the potential in the interstitial
domain takes the form

8i = 80 + 〈E〉
∞∑
n=1

n∑
m=1

cnm[P 2m−1
2n−1 (ξ)P

2m−1
2n−1 (η)

+L2m−1
2n−1Q

2m−1
2n−1 (ξ)P

2m−1
2n−1 (η)] sin(2m− 1)φ. (25)

The symmetry is now such that the order of the Legendre
functions based on the local spheroidal coordinate system is
odd, as well as the degree.

The solution for oblate spheroids can be obtained directly
from that for prolate spheroids by formally replacingξ with
iξ andd with −id in (23) and (25), where 2d is the distance
between the foci of the elliptic cross section.

4. Solution

As shown elsewhere [2, 12], the bulk conductivity can
be determined from the constant tensor of rank 2,B(2),
which appears in the multipole expansion for the interstitial
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potential, equation (12). In the following relation,I is the unit
tensor of rank 2 andσ

∗
is the normalized bulk conductivity

σ/σi

σ
∗ = I − B(2)

τ0
. (26)

For a lattice of spheroids whose axes of rotation are aligned
with one of the lattice vectors,ẑ

B(2) =
(
Bxx 0 0
0 Bxx 0
0 0 Bzz

)

and (26) reduces to

σ ∗jj = 1− Bjj
τ0

(27)

with j = x or z. From (17),Bjj = b000 [2] and we have

σ ∗ = 1− b000

τ0
. (28)

Note that the value ofb000 (and henceσ ∗) depends on the
direction in which the electric field is applied.

In order to solve for the coefficientsbmnp defined
in (17) and hence determine the bulk conductivity using
equation (28), it is necessary to write (20) in terms of
spheroidal harmonics. The growing and decaying terms can
then be matched with those in (23) and (25) andcnm can be
eliminated in each case to give a set of linear equations which
can be solved forbmnp. This can be achieved by transforming
the spherical harmonics in (21) into spheroidal harmonics
by means of appropriate transformation relationships. The
way in which this is done is described in the following two
sections.

4.1.σ∗zz

As established in [12], the following relationships can be
employed in transforming between spherical and spheroidal
coordinate systems in which the polar axes coincide (see
figure 2). For the growing harmonics, ifs and t are both
even, ors andt both odd

RsP ts (µ) =
(s−t)/2∑
j=0

Ats,t+2jP
t
t+2j (ξ)P

t
t+2j (η). (29)

The inverse relationship is

P ts (ξ)P
t
s (η) =

(s−t)/2∑
j=0

αts,t+2jR
t+2jP tt+2j (µ). (30)

The coordinateR is the radial coordinate scaled with the
distance between the centre of the spheroid and one of its
foci, d, such thatR = r/d. If s is even andt is odd, ors odd
andt even

RsP ts (µ) =
(s−t−1)/2∑
j=0

Ats,t+1+2jP
t
t+1+2j (ξ)P

t
t+1+2j (η) (31)

with

P ts (ξ)P
t
s (η) =

(s−t−1)/2∑
j=0

αts,t+1+2jR
t+1+2jP tt+1+2j (µ). (32)

For each order,t , the coefficientsαtsu and Atsu form a
lower diagonal checkerboard matrix. The growing spherical
harmonics can thus be represented as a finite series of growing
spheroidal harmonics, andvice versa. For the decaying
harmonics

R−(s+1)P ts (µ) =
∞∑
j=0

Bts,s+2jQ
t
s+2j (ξ)P

t
s+2j (η) (33)

and the inverse relationship is

Qt
s(ξ)P

t
s (η) =

∞∑
j=0

βts,s+2jR
−(s+1+2j)P ts+2j (µ). (34)

In this case, the coefficientsβtsu and Btsu form an upper
diagonal checkerboard matrix for each order. This means
that the decaying spherical harmonics are represented as
an infinite series of decaying spheroidal harmonics, and
vice versa. The following expressions for the coefficients
α andβ can be obtained using the orthogonal properties of
the Legendre functions [12]. In general

αmnuR
u = cum

∫ 1

−1
Pmn (ξ)P

m
n (η)P

m
u (µ) dµ (35)

and

βmnuR
−(u+1) = cum

∫ 1

−1
Qm
n (ξ)P

m
n (η)P

m
u (µ) dµ (36)

where

cum = 2u + 1

2

(u−m)!
(u +m)!

(37)

ξ = ξ(r, µ) andη = η(r, µ). Forαmnn andβmnn, the integrals
in (35) and (36) can be evaluated analytically to give [12]

αmnn =
1.3.5.7 . . . (2n− 1)

(n−m)! (38)

βmnn =
(−1)m(n +m)!

1.3.5.7 . . . (2n + 1)
. (39)

In other cases (35) and (36) are evaluated numerically. The
coefficientsAmnu andBmnu are obtained by numerical inversion
of the arrays of coefficientsαmnu andβmnu. Since (33) and (34)
are infinite series, the arrays of coefficientsBmnu andβmnu are
truncated to a suitable accuracy.

In this solution, only the first four non-zero terms in the
second term of (20) are considered, to give a solution forb000

accurate toλ7, whereλ = d/lwith l the side length of the unit
cell. This approach parallels that of Zuzovsky and Brenner
[2] who obtained a solution accurate toγ 7 with γ = r0/l, r0
being the radius of the spherical particles. Greater accuracy
can be obtained by including higher order terms, as in the
calculation of Sangani and Acrivos [14].

Evaluating the first few derivatives in (16) gives (21).
This equation may be used as it stands to obtain the following
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zz

z

Figure 2. Geometry for transformation between spherical and
spheroidal harmonics.

result for a cubic lattice of spheres [2], or may be transformed
to treat spheroids. For spheres

b000= 4πr3
0

[
L−1

1 +
4πr3

0

3τ0
− 16(a′20)

2γ 10

(L−1
3 + 20a′30γ

7)

−176L5(a
′
30)

2γ 14 +O(γ 18)

]−1

(40)

with r0 the sphere radius,γ = r0/l, a′nm = l2n+1anm

Ls = 1− α
α + (s + 1)/s

(41)

and, from [15, table 13],

a20 = 3.108 227 a30 = 0.573 3293. (42)

The bulk conductivity can now be obtained by substituting
(40) into (28).

In order to treat spheroidal particles, (21) is transformed
using relations (29), (31) and (33) to yield an expression
containing terms with the following combinations of
Legendre functions

P1P1 P3P3 P5P5 P 4
5P

4
5 cos 4φ

Q1P1 Q3P3 Q5P5 Q4
5P

4
5 cos 4φ.

The argument of the first Legendre function in each term is
ξ and that of the second isη. Matching terms with those
in (23) allows elimination ofcnm and determination ofbmnp.
Finally, one obtains

b000= 4πd3

{
01(L0

1)
−1 +

4πd3

3τ0
+ 4a′2002λ

5 + 6a′3003λ
7

−[4a′20B
0
13(L0

3)
−1λ5 + 2a′3006B

0
13(L0

3)
−1λ7

+16(a′20)
2A0

33λ
10 + 8a′20a

′
30A

0
3307λ

12

+12(a′30)
2A0

5306λ
14][B0

33(L0
3)
−1 + 20a′30A

0
33λ

7]−1

−(a′30)
2[3604L0

5 + 14005L4
5]λ14 +O(λ18)

}−1

(43)

with
01 = B0

11/A
0
11 02 = A0

31/A
0
11

03 = (A0
51/A

0
11)− (B0

15/B
0
55) 04 = A0

55/B
0
55

05 = A4
55/B

4
55 06 = 10(A0

31/A
0
11)− 3(B0

35/B
0
55)

07 = 3(A0
53/A

0
33) + 10(A0

31/A
0
11)− 3(B0

35/B
0
55). (44)

To obtain (43), relation (22) has again been used.
The bulk conductivity of the material can now be

calculated by evaluating (43) and substituting into (28). The
result for oblate spheroids is obtained from (43) by replacing
ξ with iξ and d with −id. For spherical particles, the
argumentξ0 in the Legendre functions and their derivatives
in Lts , equation (24), becomes large and it is better to use the
dedicated expressions given in (40) and (41).

4.2.σ∗xx

In this section, the previous solution method will be extended
to calculate the bulk material conductivity for an electric field
applied perpendicular to the major axes of the spheroids. The
simplest way of achieving this is to introduce an intermediate
transformation which rotates the polar axis of the local
spherical coordinate system in (21) throughπ/2 radians.
The transformation from spherical to spheroidal coordinates
can then be performed using the relationships given in the
previous section, resulting in a spheroidal system whose polar
axis lies perpendicular to the applied electric field. The
detailed derivation of the matrix elements involved in this
transformation is given in the appendix. The key results of
interest in this particular example are

P ts (µ) costφ =



2j6s∑
j=0

At,2js P 2j
s (µ

′) cos 2jφ′

s even, t even
2j+16s∑
j=0

Ãt,2j+1
s P 2j+1

s (µ′) sin(2j + 1)φ′

s odd, t even
2j+16s∑
j=1

Ãt,2j+1
s P 2j+1

s (µ′) sin(2j + 1)φ′

s even, t odd
2j<s∑
j=0

At,2js P 2j
s (µ

′) cos 2jφ′

s odd, t odd
(45)

wherex = z′, y = x ′ andz = y ′.
Now (21) is transformed using the above relations. For

the terms which appear in (21), (45) gives rise to

P1(µ) = Ã01
1 P

1
1 (µ

′) sinφ′

P3(µ) = Ã01
3 P

1
3 (µ

′) sinφ′ + Ã03
3 P

3
3 (µ

′) sin 3φ′

P5(µ) = Ã01
5 P

1
5 (µ

′) sinφ′ + Ã03
5 P

3
5 (µ

′) sin 3φ′

+Ã05
5 P

5
5 (µ

′) sin 5φ′

P 4
5 (µ) cos 4φ = Ã41

5 P
1
5 (µ

′) sinφ′ + Ã43
5 P

3
5 (µ

′) sin 3φ′

+Ã45
5 P

5
5 (µ

′) sin 5φ′.
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Figure 3. Bulk conductivity as a function of particle volume
fraction for high-conductivity and insulating spherical particles in
a low-conductivity matrix. The results of former theory are taken
from [7] and the experimental data is taken from [16].

Substituting these relationships into (21), the resulting
expression is transformed again using relations (29), (31) and
(33). Terms are then matched with those in (25) andcnm are
eliminated to yield a system of linear equations which can be
solved forbmnp. The final result is

b000= 4πd3

{
S1(L1

1)
−1 +

4πd3

3τ0
+ 4a′20S2λ

5

+2a′30S8λ
7 +C(24a′20λ

5 + 120a′30S2λ
7)

−6a′30λ
7[χ − S6(Ã

05
5 χ − 2a′30S7λ

7)] + O(λ18)

}−1

(46)

with

C = −S9B
1
13(L1

3)
−1 + 4a′20A

1
33λ

5 + 2a′30S10λ
7

6[B1
33(L1

3)
−1 + 20a′30A

1
33λ

7]
(47)

χ = S3 + 6CS4 + 2a′30S5L1
5λ

7 (48)

and

S1 = B1
11

A1
11

S2 = Ã01
3 A

1
31

Ã01
1 A

1
11

S3 = Ã01
1 B

1
15

Ã01
5 B

1
55

S4 = Ã01
3 B

1
35

Ã01
5 B

1
55

S5 = A1
55

B1
55

(
3− Ã41

5

72Ã01
5

)

S6 = 840Ã01
5 + Ã41

5

Ã05
5 Ã

41
5 − Ã01

5 Ã
45
5

S7 = 3Ã05
5 −

Ã45
5

72

S8 = A1
51

A1
11

(
3
Ã01

5

Ã01
1

− Ã41
5

72Ã01
1

)
S9 = Ã01

1

Ã01
3

S10 = A1
53

(
3
Ã01

5

Ã01
3

− Ã41
5

72Ã01
3

)
. (49)
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Figure 4. As for figure 3 but with prolate spheroidal particles with
aspect ratio 2.0.

0.00 0.10 0.20 0.30
particle volume fraction, f

0.0

1.0

2.0

3.0

4.0

5.0

6.0

co
nd

uc
tiv

ity
 r

at
io

: b
ul

k/
m

at
rix

present theory, xx component
zz component
former theory

highly conducting particles

insulating particles

Figure 5. As for figure 3 but with oblate spheroidal particles with
aspect ratio 0.5.

5. Calculations and validation

The aspect ratio,ε, of a spheroid is defined by

ε = a/b (50)

wherea andb are the lengths of the semi-major and semi-
minor axes, respectively. Thereforeε = 1 describes a sphere,
ε > 1 describes a prolate spheroid and 06 ε < 1 describes
an oblate spheroid. In principle, the bulk conductivity of
a composite formed of a simple-cubic lattice of spheroids
can be calculated from (43) and (46) for any value ofε.
Here, results are presented for bulk conductivity as a function
of particle volume fraction forε with values 0.5 (oblate
spheroid), 1.0 (sphere) and 2.0 (prolate spheroid), in order to
make comparisons with former theory and experimental data
available in the literature. The variation in bulk conductivity
as a function ofε and as a function of the conductivity ratio
of the two phases,α, is also shown.

The volume fraction is defined as the ratio of the volume
occupied by the inclusions to the total volume. For this
system in which one spheroidal particle occupies each unit
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Figure 6. Bulk conductivity as a function of the particle aspect
ratio ε for high-conductivity particles and volume fraction 0.1.
The results of former theory are taken from [7].
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Figure 7. Bulk conductivity as a function of the particle/matrix
conductivity ratioα for oblate spheroids with aspect ratio 0.5,
α > 1 and volume fraction 0.1. The results of former theory are
taken from [7].

cell, the volume fraction has an analytic expression

f = 4πab2

3l3
. (51)

The maximum volume fraction is achieved when the particles
are sufficiently large to touch one another. For prolate
spheroids arranged on a cubic lattice, this occurs fora = l/2
and for oblate spheroids whenb = l/2. From (51), the
maximum value off can be expressed

fmax =


(πε)/6 06 ε < 1 oblate spheroid

π/6 ε = 1 sphere

π/(6ε2) ε > 1 prolate spheroid.
(52)

The maximum volume fraction tends to zero asε → 0, in
the limit in which the oblate spheroids become infinitesimally
thin discs, and asε →∞, when the prolate spheroids become
infinitesimally thin rods or fibres.

In figure 3, predictions of bulk conductivity as a function
of volume fraction are compared with experimental data and
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Figure 8. As for figure 7 but with 06 α 6 1.

former theoretical work for highly conducting and insulating
spherical particles in a low-conductivity matrix (α→∞ and
α = 0, respectively). The independent theoretical results
were taken from [7] and the experimental data was obtained
from [16].

In figures 3, 4 and 5, predictions are shown for values of
f approachingfmax , i.e. up to the limit in which the particles
are nearly touching each other. From (52),fmax = π/12,
π/6 andπ/24 for ε = 0.5, 1.0 and 2.0, respectively. There
is good agreement between this theory and the experimental
data and former theoretical work. The discrepancy between
these predictions and other work for the highly conducting
particles asf approachesfmax is due to the fact that in this
example only four terms are used in obtainingb000. As
the particles approach one another closely, and when the
conductivity ratio between the two phases is large, this is an
insufficient number of terms to accurately describe the field
in the interstitial region. The accuracy could be improved by
using a larger number of terms.

From figures 4 and 5 it is clear that, for a particular
value off and with highly conducting particles, the bulk
conductivity is higher for particles whose greatest dimension
is parallel to the direction of the applied field. In other
words,σzz is greater thanσxx for prolate spheroids, which
are elongated in thez direction, whereas for oblate spheroids
σxx is greater thanσzz. This point is made clearly in figure 6
in which the bulk conductivity is shown as a function of the
particle aspect ratioε.

In figures 7 and 8, calculations of bulk conductivity are
shown as a function ofα for fixed volume fractionsf = 0.1
andε = 0.5. As before, there is excellent agreement between
this theory and former theoretical work [7]. The discrepancy
observed forσxx in the high-conductivity limit (figure 7)
is again explained by the low number of terms used in the
solution.

6. Conclusion

Analytical expressions have been derived for the bulk
conductivity of a material composed of aligned spheroidal
particles arranged on a simple-cubic lattice. The material
properties which form the input parameters of the model are
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the conductivity ratio of the two phases, the particle shape
and the volume fraction. The formulation given here is in
terms of electrical conductivity, but the model is equally
valid for the calculation of other material properties, such
as thermal conductivity and permittivity, due to mathematical
equivalence in the formulations. Results have been presented
for various values of particle aspect ratio, volume fraction
and conductivity ratio between the two phases, and very
good agreement has been observed with the results of an
independent calculation [7] and experimental data [16].

This model generalizes the work of Zuzovsky and
Brenner [2], who treated a simple-cubic lattice of spheres
by representing each particle as a singular multipole source
distribution. The generalization to spheroidal particles is a
useful one since the spheroid can be used to model a variety of
particle shapes, including discs and fibres in limiting cases.
The method also lends itself to further generalization. For
example, spheroids whose axes of rotation are tilted with
respect to the lattice vectors and/or the applied field can be
treated by computing the appropriate transformation matrix.
In addition, following the approach of Sangani and Yao [6],
more than one particle can be distributed in each unit cell
to create a less regular microstructure. In this way, the
effect of distributions of particle size, shape and orientation
can be modelled. A mixture of particle types can also be
considered by assigning different values of conductivity to
different particles. Finally, through a modification of the
coefficient given in (24), the effect of a layer coating the
surface of the particles can be modelled.
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Appendix: Transformation matrices

To transform an expression in spherical harmonics, referred
to axesx, y and z, into an equivalent expression referred
to axesx ′, y ′ and z′, we begin with the addition theorem
for spherical harmonics described in [17, section 5.24]. This
expresses a surface zonal harmonicPn(µ

′) in terms of general
surface harmonics, referred to another axis. If the two axes
intersect at the origin, we let the coordinates of theθ ′-axis be
θ = 2 andφ = 0. The expansion then takes the following
form

Pn(µ
′) =

n∑
p=0

αpnP
p
n (µ) cospφ (53)

whereµ = cosθ etc. The coefficientsαpn can be determined
analytically as shown by Smythe [17]. The first step in the
procedure is to multiply both sides of this byP tn(µ) costφ
and integrate over the surface of a unit sphere. Eventually
one finds

Pn(µ
′) = Pn(cos2)Pn(µ)

+2
n∑
p=1

(n− p)!
(n + p)!

Ppn (cos2)Ppn (µ) cospφ. (54)

For m = 0, (54) is required for transforming between
spherical harmonics referred to coordinate systems which
are rotated with respect to one another. Form > 0, (54) must
be generalized. We write

Pn(µ
′) cosmφ′ =

n∑
p=0

Ppn (µ)[α
mp
n cospφ + α̃mpn sinpφ].

(55)
Multiplying both sides of (55) byP tn(µ) costφ and
integrating over the surface of a unit sphere yields

αmtn =



cn0

2π

∫ 2π

0
dφ
∫ 1

−1
dµPn(µ)P

m
n (µ

′) cosmφ′

t = 0

cnt

π

∫ 2π

0
dφ costφ

∫ 1

−1
dµP tn(µ)P

m
n (µ

′) cosmφ′

otherwise
(56)

with cnt given in (37). Multiplying instead byP tn(µ) sintφ
gives

α̃mtn =



0

t = 0

cnt

π

∫ 2π

0
dφ sintφ

∫ 1

−1
dµP tn(µ)P

m
n (µ

′) cosmφ′

otherwise.
(57)

If the primed and unprimed coordinate systems are related
by

(x ′, y ′, z′) = (y, z, x) (58)

it can be shown that

µ′ =
√

1− µ2 cosφ

and

cos2 φ′ = 1− µ2

1 +µ2cot2φ
.

Using these relations, the integrals in (56) and (57) have
been evaluated numerically with an algorithm based on
[18, section 25.4.62]. For evenm, α̃mtn are zero and for odd
m αmtn are zero. This means that, for eachm, the matrix of
coefficientsαmtn can be directly inverted to yieldAmtn in (45).
Similarly, α̃mtn can be inverted to givẽAmtn .

The analytic results available from (54) can be used to
check the numerical calculation ofα0t

n . For the coordinate
relationships given in (58),2 in (54) isπ/2 and the first few
values are
α00

0
α00

1 α01
1

α00
2 α01

2 α02
2

α00
3 α01

3 α02
3 α03

3



=


1
0 −1
−1/2 0 1/4

0 1/4 0 −1/24

 .
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