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Abstract. An analytical solution is presented for the electrical conductivity of a material
composed of spheroidal particles embedded in a matrix. The patrticles are arranged on a
simple-cubic lattice with their axes of rotation aligned with one of the lattice vectors. In this
arrangement, there are two independent components of the conductivity tensor; one for the
electric field applied parallel to the rotation axis of the spheroids and one for the electric field
applied perpendicular to this axis. Both components are calculated using a method in which
each particle is replaced by a singular multipole source which gives rise to the electric
potential in the interstitial domain. This potential can readily be written as a sum of spherical
harmonics but, in order to treat spheroidal particles, it is necessary to transform the solution
into one in terms of spheroidal harmonics. The calculation of the matrix elements required
for this transformation is described and the solution for each component of the conductivity
tensor is given in analytic form. Results are presented for various values of particle aspect
ratio, volume fraction and conductivity ratio between the two phases. Very good agreement is
observed with experimental data and the results of an independent calculation.

1. Introduction low volume fractions. This is an ideal which is difficult to
achieve in practice.

Electrically conducting composite materials have a variety An early model of the bulk conductivity of a composite

of impor_tant applications such as _electrostatic s_hie_lding of material was devised by Maxwell [1], who assumed that the

electronic components and electrical stress relief in high- ;o165 were well spaced in the matrix and did not interact

:/olt_agﬁ (;Iewceds.b F(()jrd_these a(ljppll_catmnst,_ tlhetcomptl)sne 'Swith one another. Using this assumption, each particle acts
ypicallyformed by adding conducting particles toapolymer: ¢ dipole source and the following result is obtained
with low conductivity. This results in a material which is

both electrically conducting and mechanically similar to the a—1
polymer. In order to design composite materials for specific o*=1-3f T2
applications, it is useful to be able to model the properties o

thedorke]n_callyl/, k?as‘z‘?‘ o_r:)kr_]owledge of the constituent phases, hich, is independent of the size and spatial distribution of
an ;he" rde ayve |?tr| ution. it terial i I the particles. In (1)s* is the ratio of the bulk conductivity to
€ design of a composite material 1S USUally ‘a w4 of the interstitial matrixg /o;, f is the volume fraction
compromise between the desire to raise the conductivity 3S t the particle phase andis the ratico, /o;, wheres, is the
much as possible, and the need to retain flexibility so that conductivity of the particles Equatign l(l) holdspfﬁrless
the material can be moulded or extruded. Types of filler than about 0.3. In order to.determiné for larger values
commonly used in practice are carbon-black particles, carbonOf f higher-drder terms must be included in thge calculation

fibres and metal flakes or fibres. Adding increasing amounts . ) .
of filler has the effect of increasing the conductivity of the '€ higher-order terms typically depend on the size, shape
and distribution of the particles. In this paper, a method is

composite, but consequently it also becomes less flexible. g i
At a certain threshold value of volume fraction of the filler, Presented for calculating* up to orderf*#* for spheroidal

the particles or fibres are sufficiently close-packed to form an Particles arranged on a simple-cubic lattice. Spheroidal
unbroken conducting pathway through the composite, and thegeometry has the advantage of being representative of some
conductivity of the material increases sharply. The threshold useful limiting cases, approximating the behaviour of rods or
at which this occurs is known as the percolation threshold. A fibres and discs. There is good agreement with experimental
way of maximizing the material conductivity while retaining data and the results of an independent calculation, confirming
flexibility would be to control the arrangement of the filler that the result is valid for volume fractions up to the limit in
particles such that percolating networks form for relatively which the particles nearly touch.

+0(f% 1)
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Conductivity calculation for a two-phase composite

2. Lattice model accurately everywhere in the material. On the other hand,
when there is high contrast between the conductivity of the
A simple model of a composite material is one in which the phases, and when the particles approach one another closely,
filler particles are arranged on the sites of a regular lattice. higher-order terms are required. In principle, the method
Due to the periodic nature of the lattice, an infinite number of given here can be made as accurate as desired by including
particles is treated. This is a classical problem of theoretical terms of sufficiently high order. The example solution given
physics and has been considered by many authors using aater is of relatively low order, however, so there is some loss
variety of methods. In one approach, Zuzovsky and Brenner of accuracy in certain cases.
[2] replaced the particles by a singular multipole source The analytical approaches mentioned may be contrasted
distribution located at their centres and determined a solutionyith a purely numerical technique in which the composite
for a simple-cubic lattice of spheres. Simple-cubic, body- s reduced to an effective impedance network [8]. This
centred-cubic (bcc) and face-centred-cubic (fcc) lattices of ajternative scheme has the advantage of simplicity; the
spheres have been treated by McPhedran, McKenzie andyartial differential equation governing the electric potential
Derrick [3, 4] by extending Rayleigh’s method [5] to include s reduced by discretization to an equivalent of Kirchhoff's
the effects of multipoles of arbitrarily high order. Recently, |aws for a square or cubic conductance network (square for a
the lattice model has been generalized in a number of two-dimensional (2D) array and cubic for three dimensions).
ways. Sangani and Yao [6] have reduced the ordering in The accuracy of results obtained in this way depends on the
the microstructure by distributing spherical particles ina  gensity of the network used to treat a single unit cell, and is
cubic unit cell and replicating it to form an infinite simple-  |imited only by the available computing power and memory.
cubic lattice with a quasi-random distribution of particles. Another approach worthy of mention is the boundary
An orthogonal lattice of aligned spheroids has been treated byjntegral equation method. In [9], boundary integral equations
Kushch([7], with some anisotropy in the material of the matrix  are derived from Green’s theorem and are solved for the local
and the inclusions permitted. These methods are analyticalii|q, Particular care is taken with the numerical evaluation of
in nature and have the advantage of short computation imes e fie|d in order to overcome the loss of accuracy associated
In this work, the multipole expansion method of Zuzovsky ith tragitional boundary-value methods when the volume
and Brenner is adapted and applied to a simple-cubic [atticefyaction is large. This is a powerful method with the ability to
of aligned spheroidal particles. Each particle is replaced by yeq) with particles of arbitrary shape, possibly fused together,
a singular multipole source which gives rise to the electric 55 \ye|| as any type of lattice. The technique can also be
potential in the interstitial domain. The potential can readily 4ppjied to treat a random distribution of inclusions.
be written in terms of spherical harmonics but, in order As well as being suitable for calculating electrical
to treat spheroidal particles, it is helpful to transform the conductivity, these methods are equally valid for the
solution into one in terms of spheroidal harmonics so that the calculation of a number of other physical properties, for
continuity conditions at the particle surface can be applied example, thermal conductivity, magnetic permeability or

ina s_tralghtforwarq manner. The matrix elements_rgqU|r¢d dielectric constant, due to mathematical equivalence in the
for this transformation are calculated and the coefficients in formulations

the expansion determined by solving the resulting infinite
set of linear algebraic equations. It can be shown by using
Green's theorem that only the first coefficient in the expansion 3. Formulation

is required to calculate the bulk conductivity of the material.

This coefficient is determined by solving a truncated equation 3-1. Constitutive relation
set and the solution for each component of the conductivity
tensor is given in analytic form. There is no restriction on

the relative conductivities of the two phases; the conductivity interstices and has conductivity. The particles and matrix

of the filler particles may be greater or less than that of the are assumed to be homogeneous. The aim is to determine

matrix. = - .
. ) . . = {o;;}, the second-order tensor describing the effective
This calculation differs from that for the lattice of °© toi;} 9

spheroids given in [7] in the way that the infinite number conductivity of the composite. This is done without loss
b \as gr y . of generality by solving for the electric potential in the
of particles is accounted for. In [7], an addition theorem : D . . . .
. . Lo . medium when an electric field of unit magnitude is applied.
derived in the Russian literature is used to sum the effects

of particles arranged on a triple-periodic lattice. The As a consequence of the linearity of this system, there

) : exists a linear macroscopic constitutive relation between the
method adopted here, of representing each particle by a : . .
macroscopic current density and electric field

multipole expansion and transforming the solution to deal
with spheroidal geometry, is currently restricted to the _=

; ) : . (J) =0 -(E). (2)
simple-cubic array but lends itself to extension to more

general cases in which distributions of particle orientation, o, 5 |attice of spheroids oriented like the one shown in

Consider a medium composed of spheroidal particles of
conductivity o, embedded in a matrix which fills the

size and shape can be considered. figure 1,6 has only two independent components
The accuracy of this method depends on the number of
harmonics used in the expansion for the potential. For low o O 0
volume fractions, and/or a low conductivity ratio between o= ( 0O o, O ) 3)
the phases, only a few terms are required to describe the field 0 0 o
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Z 3.3. Multipole expansion

Equations (6)—(10) can be solved by analytically continuing
the interstitial fields into the interior of the space occupied
by the particles and replacing the particles themselves by
singular multipole source distributions located at their centres
[10]. The sum over all lattice sites is achieved using Fourier
analysis, following Hasimoto [11]. The details of this
development have been given previously [12] so only key
results are given here. This approach is distinct from that of
Kushch [7], in which the potential due to the infinite lattice
of particles is calculated by means of an addition theorem
established in Russian literature.

The periodic potentiatb can be expressed as follows
[2,11]

Figure 1. Prolate spheroid with axis of rotation parallelo

The problem of determining can, therefore, be reduced v 1 & 2j-1%
to two similar scalar problems in which,, ando.. are ©=P0- 7 Z;V(Z-f‘l)s(') Bej - (B} (12)
determined for a unit electric field applied parallelt@nd =

then parallel to; where @g is a constantV;, is the jth gradient polyadic

(Jy) = oy (Ey) 4 operator,(-)/ is a j-fold inner product,B;, is a constant

tensor of rankj and
<Jz> = Gzz<Ez>- (5)
1 ' e—27rikm-r
S=—-— B (13)
) TTo k2,

3.2. Laplacian problem m

The basic equations governing steady-state flow are theIn (13), 7o is the volume of the unit cell and

relation

1
Tu(F) = —0, V() ®) Fom = g by T mabe T msbs)
and the zero divergence of the current density my,ma,my =0, +1, +2, ... (14)
V-J,(r)=0 7) with (b1, b, b3) the basic vectors characterizing the unit cell

of the reciprocal lattice. The sum ovet excludes the value
wheredJ,, is the local current density vectab,, is the local m = 0, as indicated by the prime. The functishis the
electric potential at andm = i or p denotes values in the  periodic, singular solution of Laplace’s equation
interstitial or particle domains, respectively. Equations (6)
and (7) combine to show that the potential obeys the Laplace V2S = 47 [i - Z S(r — Tn)]_ (15)
equation T 5

V2®,,(r) =0 (8) . .
In principle, one can proceed to solve in general terms

everywhere. with the lattice described in (11), but here matters will be
If a uniform electric field is applied to the material, it ~Simplified by treating the simple-cubic lattice.

gives rise to a potential distribution with average gradient The polyadic operator in (12)V(;, regarded as a

(E). The potential at any point in the composite can be Cartesian tensor, is completely symmetric in all its indices.

expressed This same symmetry property may be ascribedBg,
®,(r) = D) —r - (E) ) and, further, the Cartesian tens@{j) possesses symmetry .
properties based on the fact that its components must remain
whered(r) is a spatially periodic function invariant under group operations appropriate to the symmetry
y 5 of the cube. It is found thaB, possesses only one
O(r) = O(r+7y) (10) independent component a4, only two, for example.

Continuing in this manner it can be established that (12) may
and particles are located at lattice points defined by the pe written [2]

following set of position vectors

. 1
T, = n1a1+n2as+nsas ny,na,n3=0,1,2 ... (11) ©=Po- EBVS - (B) (16)

with (a1, a,, a3) atriad of basic lattice vectors characterizing with B the partial differential operator
the unit cell. This system of equations possesses a unique o0 00 o
solution if either the macroscopic electric fiel#) or the B = Z Z Zb
macroscopic current density') is prescribed. m=0n=0 p=0

82(m+n+p)

mnp W . (17)

~
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Conductivity calculation for a two-phase composite

Theb,,,, are scalar coefficients to be determined by applying 3.4. Harmonic expansion

the continuity conditions at the particle—-matrix interface. As
shown in section 4, the bulk conductivity can be calculated

from bggo.

In order to apply the continuity conditions at the particle
surface in a straightforward way, (16) will be written in terms
of spheroidal harmonics. An important step in this process

is to use an expansion ¢fin spherical harmonics to write

(16) first as a sum of spherical harmonics. Expanding about

r = 0][11]
1 21r2 &
§=Z—c+ o X; Z Aumr? P3" (1) cOS 4ngp (18)

in which ¢ is a constant and, y and z are Cartesian
coordinates parallel to the axes of cubic symmetry

7 = r COsH

(19)
andu = cosfd. Combining (9), (16) and (19) gives, for an
electric field applied parallel to theaxis

x = r Sin@ cos¢g y = rsingsing

1
Q; = ©o — (E) (7

4 (20)

as )
B— +rcosf ).
0z
The Cartesian derivatives 6fwhich appear in (20) may be
evaluated by transforming to derivatives with respeat, i@
andg¢ using the following relations

9
ax

0
ay
.
9z .
/l_MZCOSd) _lM 1—MZCOS¢ __sSing
r 1_I’~2
= | J/1—u2sing —1u/1— u?sin cos¢
uesing =0 u=sing i
n 11— pu? 0
i)
¥
|\ o
9
¢

and then using the relations between contiguous Legendre

functions given in [13, section 3.8]. Taking derivativesSof
gives, to order”’

473

Py

b
;= o + (E)r Py — L2 P00l )
4 | r2

70
5 7 7 p4 9
+4a20r P3+ 6613())’ Ps+ 1&131}’ P5 cos 475 +O(r ):|

b
ﬂ-[ 6P3 + 24a20r5P1 + 120130}’7133 + O(l’g)]

b
+£[ 15Ps + P& cos 4p + 513Quzgr’ Py + O(r°)]

+bLOZ[ 120Ps + 72Quzer” P+ O(r9)] + O(VQ)}- (21)

In (21), the argument of the Legendre functiongiand the
relation [14]
—360

azo/azy = (22)

In the spheroidal coordinate system, spheroidal surfaces are
surfaces of constargt. The polar angle is related tpand

the azimuthal angle ig. In general, harmonic solutions of
Laplace’s equation in a spheroidal system take the form of
combinations of Legendre functions of degreand order

m wheren andm are integers such that = 0,...,n. For

a simple-cubic lattice of spheroids whose axes of rotation
(parallel toz) coincide with one of the lattice vectors, the
azimuthal symmetry dictates that the order of the Legendre
functions must be an integral multiple of four. If the electric
field is also applied parallel to this axis, the potenttals

odd in the polar variable and consequently, the degree of the
Legendre functions is odd. In the case of a prolate spheroid,
the potential in the interstitial domain can be written

oo m<n/2
O; = Do+ (E) Y Y cum[ P4 (E) Pa ()
n=1 m=0
+Lo0 1 Q% 1 (§) Par' 1 ()] cos 4np (23)
where
; l1-« (24)

L, = .
P a[Q5(60)/ P (50)] — [Q4(§0)'/ P{(§0)]

In these equations! and Q' are Legendre functions of the
first and second kinds, respectively. Tég, are unknown
coefficients. The coefficient§. have been determined by
applying the conditions that the tangential electric field and
normal current density are continuous at the particle—matrix
interface. Coefficients in an expansion fby are eliminated

to yield (23). The expansion fab, contains only growing
harmonics, which are of the form;™ ,(£) P;™ ,(n), since
the potential in the particle interior is finite at its centre. The
coordinatég denotes the surface of the particle and the prime
indicates the derivative normal to the surface, i.e.

doi ()
dg §=&o
For an electric field applied perpendicular to the axis

of rotation of the spheroids, the potential in the interstitial
domain takes the form

0;(60) =

®; = G+ (E ZZcm[PZ%:" L PR
n=1m=
+L O (s)Pz%;' Tm]sin@2m — Dg. (25)

The symmetry is now such that the order of the Legendre
functions based on the local spheroidal coordinate system is
odd, as well as the degree.

The solution for oblate spheroids can be obtained directly
from that for prolate spheroids by formally replacifigvith
i€ andd with —id in (23) and (25), where®:is the distance
between the foci of the elliptic cross section.

4. Solution

As shown elsewhere [2,12], the bulk conductivity can

has been used. Further, an algebraic error in Zuzovsky andoe determined from the constant tensor of rankBza),

Brenner’s paper [2, equation (59)], has been corrected.

which appears in the multipole expansion for the interstitial
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potential, equation (12). In the following relatiafis the unit with
tensor of rank 2 an& " is the normalized bulk conductivity (s—1—1)/2
o /o; . Pst (é)P; () = Z O‘é,;+1+2th+l+21 Ptt+l+2j (w. (32)
_ - B j=0
 =1- ri) (26)
0 For each ordert, the coefficientse), and A%, form a

For a lattice of spheroids whose axes of rotation are alignedlower diagonal checkerboard matrix. The growing spherical

with one of the lattice vectorg, harmonics canthus be represented as afinite series of growing
spheroidal harmonics, andce versa For the decaying
_ Biw O 0 harmonics
B(z) = 0 Bix 0
o]
0 0 B RV PI(w)y=) B! ! P! 33
H(1) =Y Bl o Qg (E)PLoi(n)  (33)
and (26) reduces to Jj=0
. and the inverse relationship is
* BJJ
ol =1 (27)
To

. QLEPI) =) By R Pl (). (34
with j = x orz. From (17),B;; = booo [2] and we have ’ ) ]2::0 5:5+2] $*2) (34)

oF =1 booo 28) In this case, the coefficient§], and B!, form an upper
T0 diagonal checkerboard matrix for each order. This means
that the decaying spherical harmonics are represented as
Note that the value obooo (and hencer*) depends onthe 4 infinite series of decaying spheroidal harmonics, and
direction in which the electric field is applied. vice versa The following expressions for the coefficients
In order to solve for the coefficients,,,, defined 4 andg can be obtained using the orthogonal properties of
in (17) and hence determine the bulk conductivity using the Legendre functions [12]. In general
equation (28), it is necessary to write (20) in terms of .
spheroidal harmonics. The growing and decaying terms can m o m m m
then be matched with those in (23) and (25) apgl can be % RE = Cum f_l P E) B P (1) d
eliminated in each case to give a set of linear equations which
can be solved fab,,,,,. This can be achieved by transforming and
the spherical harmonics in (21) into spheroidal harmonics 1
by means of appropriate transformation relationships. The ﬂ;’LR—(‘”D = cum/ oY (E)P (P () du (36)
way in which this is done is described in the following two -1
sections. where

(35)

2u+1(u—m)!
um = — 37
¢ 2 (u+m) (37)
. . . . . & = &(r, w) andn = n(r, ). Forey, andpy,, the integrals
As established in [12], the following relationships can be i, (35) and (36) can be evaluated analytically to give [12]
employed in transforming between spherical and spheroidal

coordinate systems in which the polar axes coincide (see n 1357...(2n-1)

4.1.07%,

figure 2). For the growing harmonics, sfand are both S = (n —m)! (38)
even, ors andr both odd (1 ( Ny
m -D"(n+m)!

(s=n/2 Pun = 1357...(2n+1)° (39)

R*P! = AL . P, (§)P.,.(n). 29 .
s (W Z sr2j Praaj€) Pragy () (29) In other cases (35) and (36) are evaluated numerically. The

= coefficientsA”, andB,’, are obtained by numerical inversion
The inverse relationship is of the arrays of coefficients], andg.’,. Since (33) and (34)
are infinite series, the arrays of coefficie®$ andp;: are
(s=1)/2 , truncated to a suitable accuracy.
PIEPI() = Y ol R Plyi(w).  (30) In this solution, only the first four non-zero terms in the
j=0 second term of (20) are considered, to give a solutiobdgy

accurateta’, wherex = d/I with! the side length of the unit

The coordinater is the radial coordinate scaled with the :
. X .. cell. This approach parallels that of Zuzovsky and Brenner
distance between the centre of the spheroid and one of its . . .
[2] who obtained a solution accurated with y = ro/1, ro

foci, d, such thaik = r/d. If s is even and is odd, ors odd being the radius of the spherical particles. Greater accuracy

andr even can be obtained by including higher order terms, as in the
(s—1—=1)/2 calculation of Sangani and Acrivos [14].
R*Pl(u) = Z AS 142 Pliaioj (§) Pligig; () (31) Evaluating the first few derivatives in (16) gives (21).
j=0 ' ' ' This equation may be used as it stands to obtain the following
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Figure 2. Geometry for transformation between spherical and
spheroidal harmonics.

Conductivity calculation for a two-phase composite

with

Fi=Bl/Ah  To=AGy/AL

'3 = (A2)/AY) — (BY%/BS%) T4 = Ads/Bs
I's = Aés/Bgs e = lo(Agl/Agl) - 3(3395/335)
7 = 3(A2;/ A%y +10(A%,/A%) — 3(BS/BY).  (44)

To obtain (43), relation (22) has again been used.

The bulk conductivity of the material can now be
calculated by evaluating (43) and substituting into (28). The
result for oblate spheroids is obtained from (43) by replacing
& with i& andd with —id. For spherical particles, the
argument, in the Legendre functions and their derivatives
in £, equation (24), becomes large and it is better to use the
dedicated expressions given in (40) and (41).

4.2.0%,

In this section, the previous solution method will be extended
to calculate the bulk material conductivity for an electric field
applied perpendicular to the major axes of the spheroids. The
simplest way of achieving this is to introduce an intermediate

result for a cubic lattice of spheres [2], or may be transformed transformation which rotates the polar axis of the local

to treat spheroids. For spheres

4 3 1 7 \2,,10
booo = 473 [c;l + 7o ?(“20) Y
3t (L3 +20a55y7)
-1
—176L5(aj)’y ™ + ow%] (40)
with ro the sphere radius;, = ro/1, a,,, = 1?"Xa,,
1 —
= — (41)
a+(s+1)/s
and, from [15, table 13],
axo = 3.108 227 azg = 0.5733293 (42)

The bulk conductivity can now be obtained by substituting
(40) into (28).

In order to treat spheroidal particles, (21) is transformed
using relations (29), (31) and (33) to yield an expression
containing terms with the following combinations of
Legendre functions

PPy P3P3 PsPs P2PZcos 4

01P Q3P; OsPs Q2P cos 4.

The argument of the first Legendre function in each term is
& and that of the second iz Matching terms with those

in (23) allows elimination ot,,,, and determination df,,,,,.
Finally, one obtains

4md’
booo = 47'[d3{r1(/.:(1))_1 + 3

+ 4aé01“2k5 + 6aéOF3A7
70

—[4ahoBRa(L£9) ™A% + 2a5,T'6 Ba(L3) AT
+16(ap0)? Adg1 "0 + Bahoa’n AT 74
+12(abe) 2 ALTeA [ BS(LY) ™ + 200504507171

-1
—(abo)?[36T4L2 + 14005 L2114 + ouls)} (43)

spherical coordinate system in (21) througli2 radians.
The transformation from spherical to spheroidal coordinates
can then be performed using the relationships given in the
previous section, resulting in a spheroidal system whose polar
axis lies perpendicular to the applied electric field. The
detailed derivation of the matrix elements involved in this
transformation is given in the appendix. The key results of
interest in this particular example are

2j<s
> AL P () cos 2i¢)
j=0
s event even
2j+1<s -
Z A;’2j+1P32j+1(,u/) sin(2j + l)(ﬁ/
j=0
s odd 7 even
2j+1<s
> AEHPE() sin2;) + )¢
j=1

P! (1) costp =

s even ¢ odd
2j<s

> AP PY (1) cos 2i¢
=0

s odd, r odd
(45)
wherex =7/, y = x’ andz = y'.
Now (21) is transformed using the above relations. For
the terms which appear in (21), (45) gives rise to
Pi(p) = AY'P{(u)) sing’
P3(n) = Ag'P3 (i) sing’ + AP P3 (1) sin 3¢/
Ps(p) = AQEP3(u') sing’ + ALP3 (') sin 3p/
+AB P (1) sin 5p’
4 _ ABlpls N einAl 4 AA3D3. N o ’
P5 () cosdp = As Ps (') sing’ + Ag”Pg (') sin 3
+ASPS (1) sin 5.
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Figure 4. As for figure 3 but with prolate spheroidal particles with

Figure 3. Bulk conductivity as a function of particle volume aspect ratio 2.0.
fraction for high-conductivity and insulating spherical particles in
a low-conductivity matrix. The results of former theory are taken 6.0

from [7] and the experimental data is taken from [16].
—— present theory, xx component

---- zz component

Substituting these relationships into (21), the resulting & >0 Oformer theory
expression is transformed again using relations (29), (31) and a0l |
(33). Terms are then matched with those in (25) gpdare
eliminated to yield a system of linear equations which can be &
30 F highly conducting particles b

solved forb,,,,. The final result is

4 d®

70

n
o

+ daly,Sor®

conductivity ratio: bulk/mat

booo = 4nd3{sl(.ci)—1 +

+2a4,Se)" + C (24a,\° + 12Qu5,552.") S T

=
o

insulating particles T T T TT==---o.

-1
—6a4o) [x — Se(ALx — 2a3,S72.7)] + O(/\lg)} (46) 9 00 0.10 0.20 0.30

particle volume fraction, f

with Figure 5. As for figure 3 but with oblate spheroidal particles with
o 593%3(5%)_1 + 40/2014%3);’ + ZaéOSlO)j (47) aspect ratio 0.5.
1 1y-1 / 1147
6[BL (L)1 + 20a4,AL07] 5. Calculations and validation
X = S3+6CSy+ 20345550, (48) The aspect ratias, of a spheroid is defined by
and c=a/b (50)
1 201 41 201p1
S1= B—}l ) = églAil 3= %13115 wherea andb are the lengths of the semi-major and semi-
A1 AT AL Ag Bss minor axes, respectively. Therefare= 1 describes a sphere,
€ > 1 describes a prolate spheroid andl@ < 1 describes
2313315 Al Xgl an oblate spheroid. In principle, the bulk conductivity of
Sq = 20ip1 Ss = BL \° 7 72301 a composite formed of a simple-cubic lattice of spheroids
5 755 s 5 can be calculated from (43) and (46) for any valuecof
840401 + 41 _ 745 Here, results are presented for bulk conductivity as a function
6 = D 5 S; = 3Ag5_ 75 of particle volume fraction for with values 0.5 (oblate
APAY — AL AP 72 spheroid), 1.0 (sphere) and 2.0 (prolate spheroid), in order to
make comparisons with former theory and experimental data
AL (AR AR A% available in the literature. The variation in bulk conductivity
S8 = AL \Tj01 T 70501 So = =01 as a function ot and as a function of the conductivity ratio
11 Al 72"41 A3 .
of the two phasesy, is also shown.
o1 a The volume fraction is defined as the ratio of the volume
Si0= Aé3< ’“721 — 201) (49) occupied by the inclusions to the total volume. For this
Az 72A3 system in which one spheroidal particle occupies each unit
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Figure 6. Bulk conductivity as a function of the particle aspect
ratio e for high-conductivity particles and volume fraction 0.1.
The results of former theory are taken from [7].
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Figure 7. Bulk conductivity as a function of the particle/matrix
conductivity ratiox for oblate spheroids with aspect ratio 0.5,

a > 1 and volume fraction 0.1. The results of former theory are
taken from [7].

cell, the volume fraction has an analytic expression

4 ab?
f= TE (51)
The maximum volume fraction is achieved when the particles
are sufficiently large to touch one another. For prolate
spheroids arranged on a cubic lattice, this occura ferl/2
and for oblate spheroids when = /2. From (51), the
maximum value off can be expressed

(me)/6 0<e<1 oblate spheroid
fonax = 1 7/6 e=1 sphere
7/(6€2) e>1 prolate spheroid.

(52)
The maximum volume fraction tends to zeroeaas> 0, in
the limitin which the oblate spheroids become infinitesimally
thindiscs, and as — oo, whenthe prolate spheroids become
infinitesimally thin rods or fibres.
Infigure 3, predictions of bulk conductivity as a function

Conductivity calculation for a two-phase composite
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conductivity ratio: particle/matrix

Figure 8. As for figure 7 but with 0< o < 1.

former theoretical work for highly conducting and insulating
spherical particles in a low-conductivity matrix (~ oo and

a = 0, respectively). The independent theoretical results
were taken from [7] and the experimental data was obtained
from [16].

In figures 3, 4 and 5, predictions are shown for values of
f approachingf,,..., i-e. up to the limit in which the particles
are nearly touching each other. From (52).. = 7/12,

/6 andn /24 fore = 0.5, 1.0 and 2.0, respectively. There

is good agreement between this theory and the experimental
data and former theoretical work. The discrepancy between
these predictions and other work for the highly conducting
particles asf approacheg,,.. is due to the fact that in this
example only four terms are used in obtainibgo. As

the particles approach one another closely, and when the
conductivity ratio between the two phases is large, this is an
insufficient number of terms to accurately describe the field
in the interstitial region. The accuracy could be improved by
using a larger number of terms.

From figures 4 and 5 it is clear that, for a particular
value of f and with highly conducting particles, the bulk
conductivity is higher for particles whose greatest dimension
is parallel to the direction of the applied field. In other
words, o, is greater thaw,, for prolate spheroids, which
are elongated in thedirection, whereas for oblate spheroids
oy IS greater thaw,,. This point is made clearly in figure 6
in which the bulk conductivity is shown as a function of the
particle aspect ratie.

In figures 7 and 8, calculations of bulk conductivity are
shown as a function ai for fixed volume fractiong = 0.1
ande = 0.5. As before, there is excellentagreement between
this theory and former theoretical work [7]. The discrepancy
observed foro,, in the high-conductivity limit (figure 7)
is again explained by the low number of terms used in the
solution.

6. Conclusion

Analytical expressions have been derived for the bulk
conductivity of a material composed of aligned spheroidal
particles arranged on a simple-cubic lattice. The material

of volume fraction are compared with experimental data and properties which form the input parameters of the model are
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the conductivity ratio of the two phases, the particle shape For m = 0, (54) is required for transforming between
and the volume fraction. The formulation given here is in spherical harmonics referred to coordinate systems which
terms of electrical conductivity, but the model is equally are rotated with respect to one another. fas 0, (54) must
valid for the calculation of other material properties, such be generalized. We write

as thermal conductivity and permittivity, due to mathematical

equivalence in the formulations. Results have been presented , , . R

for various values of particle aspect ratio, volume fraction ~ Fn(i) cosme’ = > Pl (wley? cospe + ) sin pe].

and conductivity ratio between the two phases, and very =0 (55)

good agreement has been observed with the results of ar}\/lumplymg both sides of (55) by P!(u)cosi¢ and

independent calculation [7] and experimental data [16]. intearating over the surface of a unit sphere vields
This model generalizes the work of Zuzovsky and 9 9 P y

Brenner [2], who treated a simple-cubic lattice of spheres

2 1
by representing each particle as a singular multipole source o d¢/ du P, (1) P (1) cosme’
distribution. The generalization to spheroidal particles is a 21t Jo -1
useful one since the spheroid can be used to model a variety of t=0
particle shapes, including discs and fibres in limiting cases. % = e (7 1
The method also lends itself to further generalization. For - d¢ cost¢ f du P, (w) P, (1) cosme’
example, spheroids whose axes of rotation are tilted with 0 ) -

otherwise

respect to the lattice vectors and/or the applied field can be
treated by computing the appropriate transformation matrix.
In addition, following the approach of Sangani and Yao [6],
more than one particle can be distributed in each unit cell 9V€S
to create a less regular microstructure. In this way, the

(56)
with ¢, given in (37). Multiplying instead byP! (u) sint¢

effect of distributions of particle size, shape and orientation 0
can be modelled. A mixture of particle types can also be t=0
considered by assigning different values of conductivity to g — Cur 2 ) )
different particles. Finally, through a modification of the / do Slnt¢/ du P, (n) P (1) cosme
coefficient given in (24), the effect of a layer coating the
surface of the particles can be modelled. otherwise (57)

If the primed and unprimed coordinate systems are related
Acknowledgments by
This work was supported by an Engineering and Physical ™'y, 2 = (. z,0) (58)

Sciences Research Council ROPA and was carried out in

conjunction with the Polymer Research Centre, School of itcan be shown that

Physical Sciences, University of Surrey. W= mco s
Appendix: Transformation matrices and
1— 2
To transform an expression in spherical harmonics, referred cog ¢ = 711“2
1+ p2cof¢

to axesx, y andz, into an equivalent expression referred
to axesx’, y’ andz’, we begin with the addition theorem  Using these relations, the integrals in (56) and (57) have
for spherical harmonics described in [17,section 5.24]. This peen evaluated numerica”y with an a|gorithm based on
expresses asurface zonal harmahig.) interms ofgeneral  [18, section 25.4.62]. For even, & are zero and for odd
surface harmonics, referred to another axis. If the two axes,, o™ are zero. This means that, for eaghthe matrix of
intersect at the origin, we let the coordinates of@haxis be Coeff,C,enmmt can be directly inverted to yield”" in (45).

6 = ® and¢ = 0. The expansion then takes the following Similarly, @ can be inverted to glvﬁmt

form The analytlc results available from (54) can be used to

P,(1) = ZaanP(#) CoSp¢ (53) check the numerical calculation aﬁf. For the coordinate
p=0 relationships given in (58% in (54) isx/2 and the first few
whereu = cosf etc. The coefficients? can be determined ~ Values are
analytically as shown by Smythe [17]. The first step in the /a3°

procedure is to multiply both sides of this B () cost¢ a0 o9t

and integrate over the surface of a unit sphere. Eventually | «3° a‘z’l ad?

2
00 01 02 03

one finds 3" oy ozc og
P,(W) = P,(COSO) P, (1) é .
n _ I J— -
23 Lp);Pn”(cos@)Pn” (1) COSpo. (54) =l -12 o wva
=1 (ntp)! 0 14 0 -1/24
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