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Abstract

The spectral density representation of Bergman [Ann. Phys. 138 (1982) 78] is applied to measurements of bulk permittivity on a

composite system with various levels of filler concentration, in order to extract structural information such as shape and spatial

arrangement of the filler particles. The composites are paraffin wax filled with metal-coated hollow glass micro-spheres. The inclusions

have an outer layer of dielectric which prevents conduction between them. In the spectral density analysis, the dielectric permittivity of

the matrix phase is used as measured. The permittivity of the particles is deduced by application of a mixture formula to the measured

permittivity of the composite system with low concentrations of filler. The calculated spectral density functions for each concentration

level indicate that the topology of the mixtures undergoes a transition when the inclusion concentration reaches approximately 25%.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Electrical properties of mixtures have attracted research-
ers to seek a relation between overall composite properties
and intrinsic properties of the parts forming the mixture
(constituents) and their spatial arrangement inside the
mixture [1–8]. Bergman, in introducing a spectral density
function (SDF) for binary mixtures [9–15] proposed that
one can separate the geometrical contributions from the
pure dielectric response of a composite if and only if the
dielectric properties of the constituents are known.
Recently, Tuncer [16,17] has shown that the unknown
(SDF) in binary mixtures can be determined using a novel
numerical technique [18,19], in which constrained least-
squares and Monte Carlo techniques are applied simulta-
neously to solve the ill-posed inversion problem of the
front matter r 2005 Elsevier B.V. All rights reserved.
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spectral density representation (SDR). Here, this method is
applied to permittivity data obtained for composite
systems consisting of paraffin wax filled with various
concentrations of multi-layered spheres, with the aim of
extracting topological information about the systems. The
filler particles are hollow glass microbubbles [20], first
coated with tungsten, then with insulating aluminum oxide.
Conductivity across the bulk of the composite is largely
prevented, even for high fill factors, by the presence of the
aluminum oxide outer layer [21].
The data have been analyzed previously by [22] using a

theoretical approach in which the dielectric response of the
composites is calculated by an effective medium formula
for composites with multi-layered filler particles [23]. In
this paper, we determine an effective dielectric permittivity
of the filler particles (assumed homogeneous) with an a
priori assumption that the effective medium approxima-
tions are valid for low concentrations of inclusions. The
(SDF) of the system is then extracted by applying the
numerical method mentioned above [18,19] and, from this,
the structural parameters of the composite system are

www.elsevier.com/locate/physb
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determined. The calculated SDFs for each filler concentra-
tion level indicate that the topology of the mixture
undergoes a transition at approximately 25% filler
concentration. At concentrations higher than 25%, nearly
identical SDFs are determined for high spectral para-
meters, indicating that these samples have similar topology.
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Fig. 1. (a) The real and (b) the imaginary part of the dielectric permittivity

ee of composites with different filler concentration levels. Nominal and

measured values of filler concentration are given in Table 1.
2. Theory

Dielectric properties of mixtures are usually expressed
with the help of effective medium theories [1–8]. One such
expression is derived for various shapes of inclusions

ðee � emÞ½ee þ ðd � 1Þem��1 ¼ qðei � emÞ½ei þ ðd � 1Þem��1,

(1)

where e and q are the dielectric permittivity, concentration
of inclusions, respectively. The quantity, d, is related to the
shape of the inclusions; it is the principle term n of a
depolarization tensor of a single ellipsoidal inclusion, n ¼

d�1 [2]. Eq. (1) is also known as the Maxwell Garnett
approximation [24,25], and for n ¼ 1

3
it is called Clausius–-

Mossotti or Maxwell Garnett formula. In a particulated
binary composite, n can also take the form of a variable in
dilute or isotropic mixtures; e.g. needle-like (prolate)
inclusions parallel to the field direction yield no 1

3
,

spherical inclusions yield n ¼ 1
3
, uni-directional cylindrical

inclusions perpendicular to the field direction yield n ¼ 1
2,

and oblate inclusions perpendicular to the field yield n � 1
[26,16]. The subscripts ‘e’, ‘m’ and ‘i’ in Eq. (1) denote the
effective medium, matrix and inclusion phases, respec-
tively. Eq. (1) yields the Wiener bounds [27,28] for d ¼ 1
and d ¼ 1, corresponding, respectively, to structures
layered perpendicular and parallel to the field direction.

A more general representation for the dielectric proper-
ties of a mixture is the so-called ‘SDR’ of Bergman [9–11],
where the effective permittivity e is expressed as [17]

x � Dem=Dim ¼ Aþ

Z 1

0þ
gðxÞ½1þ e�1m Dimx��1 dx. (2)

In Eq. (2), x is the complex and frequency-dependent scaled
permittivity, Dab ¼ ea � eb, and x is the spectral parameter.
The constant A depends on both the filler concentration
and the structure of the composite, and is related to
‘percolation strength’—a measure of conduction due
to percolation in the structure [29,30]. The SDF, gðxÞ in
Eq. (2), satisfies the following two relations [11,29,31]:

Z 1

0þ
gðxÞdxþ A ¼ q (3)

andZ
xgðxÞdx ¼ qð1� qÞd�1. (4)

These relations connect the SDF directly to the concentra-
tion of inclusions and their shape through parameters q

and d, respectively.
3. Experiment

Experimental details and sample preparation procedures
are published elsewhere [21,22]. The dielectric permittivity
of samples was measured on the frequency interval
0:05GHzono18:3GHz. In Fig. 1, the dielectric response
of the composites with different inclusion concentration
levels q are presented. Nominal and measured values of
filler concentration, qn and q, respectively, are listed in
Table 1. Both the dielectric permittivity e0e and losses e00e
increase with increasing filler concentration. The increase
in the real part indicates that the filler has higher dielectric
permittivity values than the matrix phase. The structure of
the filler particles gives rise to the broad interfacial
polarization relaxation peak observed in the data shown
in Fig. 1, due to confinement of the conduction electrons in
the thin conductive tungsten shell [22]. The tungsten layer
is nominally 20 nm thick, although it has been shown by
scanning electron microscopy that the layer is not
continuous but consists of an approximately uniform
distribution of islands with lateral dimension of order
1 mm. Although the dielectric permittivity of the unfilled
paraffin wax was measured directly, it was not possible to
measure the dielectric permittivity of the inclusion parti-
cles, ei, independently. Knowledge of ei is necessary for
application of the SDF analysis. Due to the complicated
structure of the inclusions, it is not trivial to determine ei.
The method by which ei was determined is described below.
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Table 1

Parameters obtained from experiment and spectral density analysis

qn q qg n�1 xgmax A e1e

0.00 – – – – – 2.261

0.05 0:07� 0:01 0.042 9.1 0.100 0.037 2.472

0.10 0:10� 0:02 0.098 4.8 0.220 0.059 2.762

0.15 0:16� 0:01 0.152 4.1 0.406 0.078 3.009

0.20 0:23� 0:01 0.206 4.5 0.673 0.107 3.208

0.25 0:28� 0:01 0.334 4.0 0.931 0.131 3.591

0.30 0:33� 0:01 0.404 4.0 0.965 0.169 3.964

0.40 0:45� 0:02 0.572 3.5 0.965 0.207 4.686

0.50 0:51� 0:02 0.780 3.2 0.931 0.271 5.879

0.55 0:56� 0:02 0.639 3.0 0.626 0.261 6.200

1.00 – – – – – 7.688

qn, q and qg are nominal, measured and calculated filler concentrations,

respectively. The parameters n and A are related to the shape of

the inclusions and percolation arrangements in the structure, respectively.

The localization parameter for the most probable spectral density

parameter is xgmax. The permittivity of the mixture at high frequencies

ðn416GHzÞ is e1e .
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Fig. 3. (a) The real and (b) the imaginary parts of the dielectric
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Fig. 2. Visualization of the matrix filled with multi-layered fillers and its

equivalent representation as a binary mixture.
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4. Permittivity of the inclusions

First we consider whether the filler particles can be
described in terms of an effective dielectric permittivity as
illustrated in Fig. 2. For modelling purposes the multi-layer
particles are regarded as homogeneous particles exhibiting
the same dielectric response as the multi-layer particle. In
order to determine the dielectric permittivity of the
inclusions we make an a priori assumption, supposing that
the effective medium approximations are valid for low
concentrations of filler inclusions (in fact, for 5% and 10%
filler concentration). The validity is of this assumption is
confirmed later in the paper. In Fig. 3, the dielectric
permittivities of the matrix (0% filler concentration) and
the composite with 5% filler concentration are shown [22].
It can be seen that the losses in the matrix are very small
compared to those in the composite. The large deviations
and negative loss values in e00m are due to experimental
error. Although at first sight, the proposed procedure
would look as if it suffers and yields inaccurate results due
to lack of higher multipole moments, it is not true since the
mixture is a dilute mixture ðqo0:2Þ, moreover there are
additional reasons to be considered for the studied system.
(i) The frequency range is too narrow to detect the
influence of multipole moments [32]. (ii) The broadening
of the dielectric response due to interaction of particles is
not significant—the Debye type relaxation of the interfacial
polarization gets only slightly deformed in dense mixtures
[5,8]. In addition if multipole moments exist, they would be
visible in the spectral density because of their depolariza-
tion factors, [33] showed that the distribution of relaxation
times in a mixture indicate deviations from that of Debye
relaxation in the presence of particle–particle interactions.
If the analogy between the distribution of relaxation times
and the SDR is taken into account [34], it is clear that the
broadening of the dielectric spectrum would be very
slightly due to interaction effects. (iii) Finally, if non-
ohmic conduction processes exist in the composite system,
e.g. hopping or tunneling of charged particles between
closely located filler particles, it would be hard to satisfy
the conditions for effective medium theories (mixture
expressions), and it would also cause the SDR to fail
[35,36].
Proceeding with the above assumption, we use the

expression in Eq. (1) and rewrite it for the permittivity of
the inclusions ei as follows:

ei ¼
em½emðd � 1Þðq� 1Þ þ eeðd � 1þ qÞ�

eeðq� 1Þ þ em½1þ ðd � 1Þq�
. (5)

Inserting ee, measured at q ¼ 0:05, and dielectric data of
the matrix, em, into Eq. (5), one can calculate the
permittivity of the inclusions, ei. The shape factor of the
inclusions ðn�1Þ is permitted to be a free parameter in an
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optimization procedure based on Eqs. (2) and (5).
Integration of g with respect to x yields the concentration
of the filler particles q, as in Eq. (3).

The optimization procedure yields d � n�1 ¼ 4:8, corre-
sponding to slightly deformed spheres [37]. The determined
permittivity of the filler particles is shown in Fig. 4, and the
real part of the permittivity increases with decreasing
frequency. The losses indicate a peak occurring at
approximately 15:9GHz, due to Maxwell–Wagner–Sillars
polarization effects [26,38,39] at the interfaces between the
metal-coating and the dielectric media (aluminum oxide or
glass). The dielectric relaxation seen in ei may be expressed
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Fig. 4. Dielectric permittivity of inclusions. The thick solid lines are the
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values are presented with dashed (- - -) and solid (——) lines, respectively. (c
as a Debye relaxation [40], which has the form

ei � 1 ¼ Deð1þ { 2pntÞ�1, (6)

with De and t being the relaxation strength and time,
respectively, and { ¼

ffiffiffiffiffiffiffi
�1
p

. The thick smooth lines in Fig. 4
are generated with De ’ 11 and t ’ 100 ns.
In order to test whether the calculated permittivity for

the inclusions is correct, the Debye-type dispersion
presented in Fig. 4 is used to calculate the dielectric
permittivity of the composite system with 10% filler
concentration, using Eq. (1). In Figs. 5a and b, both the
measured and the calculated values of ee are presented for
qn ¼ 0:10. Very good agreement is observed. The relative
error between the curves is shown in Fig. 5c. Even the
ripple due to the experimental error is recovered. We
conclude that the procedure adopted here, to determine ei
for homogeneous particles equivalent to the real multi-
layered particles by applying effective medium theory to a
dilute mixture, is successful.

5. Spectral density function analysis

Now that the permittivities of the inclusions and the
matrix are known explicitly, one can proceed to determine
the spectral density functions for all of the composite
samples. First the composite with 20% filler concentration
is considered in detail. In Figs. 6a and b the real and the
imaginary parts of the dielectric permittivity for the
composite with 20% filler concentration are shown with
open symbols ð�Þ. For clarity, only every third measure-
ment point is presented in the figure. Since the data has
large scatter outside the range �3216GHz (see Fig. 4),
only data in this frequency range is used in the numerical
analysis. The solid lines in Figs. 6a and b are the values
determined with Eq. (2) by inserting the SDF, shown in
Fig. 6d. The SDF is extracted from the ratio of the scaled
dielectric permittivity values x ð� Dem=DimÞ, shown as an
Argand plot in the inset Fig. 6c. The extracted spectral
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density function, shown in Fig. 6d, is a delta-sequence [41]
with maximum in g at xgmax ’ 0:67. The integral of g,
Eq. (3), results in qg ’ 0:206 which is close to the measured
concentration q ¼ 0:23� 0:01 given in the description of
the sample preparation [21].

The SDFs for all the composite samples, with different
filler concentration levels, are presented in Fig. 7. In the
figure, the inset shows the most probable spectral
parameters as a function of nominal concentration qn. It
is clear that the structure of the mixture changes as the
concentration rises towards 25%. It is interesting to
observe that at concentration levels 25–45% the SDFs
are localized around unity, xgmax ’ 1, and they have
similar shape. This indicates that these mixtures are highly
homogeneous or the electrical properties of the constitu-
ents might have been altered, i.e., influence of non-ohmic
conductivity, at these concentration levels. If we assume
that the former case is ideal, then the determined structural
information is similar for each of these cases and it is not
possible to separate differences between the structures as
we can for the dilute mixtures [16]. At concentrations of
45% and higher, the SDR (Fig. 7a) indicates additional
peaks at lower spectral parameters. These probably
indicate the existence of a connected network of filler
particles inside the composite, but may indicate the
presence of another relaxation process.
In Table 1, parameters obtained from the optimization

procedure (qg and n) and the SDF analysis (xgmax, A and
e1e —the permittivity of the mixture at frequencies well
beyond the influence of the relaxation process) are listed.
Plots of the estimated filler concentration qg, the percola-
tion strength A, and the dielectric increment are also shown
in Fig. 8 as a function of nominal filler concentration qn.

6. Discussion

Since the inclusions are coated with an insulating outer
layer, no significant conduction due to percolation effects is
expected. Indeed, the percolation strength A is shown in
Fig. 8a to be linear in nominal filler concentration and the
slope is � 2�1. This implies that inter-particle conduction
effects have negligible influence on the dielectric properties
of these composites because of the insulating dielectric
layer on the inclusions, consistent with the experimental
observations of Ref. [21].
As seen in Table 1 and Fig. 8a ð�Þ, there is very good

agreement between qg, qn and q for low filler concentra-
tions; qnp0:20. For higher concentrations, however, the
estimated concentrations are significantly greater (by about
20–50%) than the nominal values. One reason for this
could be the existence of aggregates or a connected
network of filler particles in the system. Low-frequency
permittivity measurements on the same composites suggest
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that the percolation threshold occurs at around 20% filler
concentration [21]. In cases where the particles form
connected networks, filler concentrations estimated from
the SDF method are likely to deviate from those measured.
An other reasonable explanation for this deviation could
be the possible increase of the filler or the aggregate
conductivity as they approach to each other when the
concentration was increased, this may cause tunneling of
electrons or hopping of other charge carriers between filler
particles that might impose motification of intrinsic filler
properties, which were not considered and would be very
hard to introduce in the SDR analysis.

The inverse of parameter n, which is related to particle
shape, has values listed in Table 1 which range between 3.0
and 4.8 for qn in the range 0.10–0.55. The composite
samples were made using nominally spherical filler particles
(for which n�1 ¼ 3) from the same batch of powder. In
fact, n is highly sensitive to particle aspect ratio and n�1 ¼

4:8 represents only a slight deformation (elongation
parallel to the applied electric field) of a sphere. For
example, a prolate spheroid with aspect ratio 2 and long
axis parallel to the applied field has n�1 ¼ 9. Hence we
contend that the particle shape is quite well reproduced by
the SDF analysis, apart from for the composite with
qn ¼ 0:05, in which case n�1 ¼ 9:1.

In Fig. 8b, the calculated effective dielectric permittivity
at high frequencies ðnb16GHzÞ, e1e , is plotted as a
function of filler concentration; both against nominal
concentration qn ðmÞ and concentration estimated by the
SDF method, qg ð&Þ. The Wiener bounds are shown as
solid lines. The curve obtained with nominal concentration
values appears to violate the Wiener bounds for qn greater
than about 0.30, whereas that obtained with qg largely
obeys the Wiener bounds, except for one concentration
value. This observation supports the validity of the
concentration values obtained by the SDF analysis,
although it is important to note that the position of the
Wiener bounds is closely connected to the value of ei, about
which we have made certain assumptions. If ei is actually
somewhat larger than the values computed here, then the
bounds in Fig. 8b will also shift to larger values of e1e and
possibly embrace points plotted for both qn and qg.

7. Conclusions

In this paper, the SDR method is applied to a particulate
composite system consisting of paraffin wax and insulated,
metal-coated particles. The a priori assumption made
regarding the dielectric permittivity of the filler particles,
that effective medium theory applied to composites with
low concentrations of inclusions can be used to deduce the
dielectric function of the inclusions, was shown to be
successful. The SDFs of composites with intermediate filler
concentrations (25–45%) were found to be similar,
indicating either these samples have similar topological
arrangement or the non-ohmic conductivity effects are
present that influence the dielectric properties of the
constituents. The applied numerical method yields excel-
lent agreement with experimental values when the filler
concentration is low, p20%. The discrepancies observed
between calculated and measured values of filler concen-
tration for values greater than 20%, and the appearance of
additional peaks at low spectral parameters for concentra-
tions of 45% and greater, are likely due to the existence of
connected networks of filler particles inside the composite,
in agreement with low-frequency studies which suggest a
percolation threshold of about 20% for this system. Last
but not least, the possible presence of non-ohmic conduc-
tion processes at concentrations around the percolation
threshold and over might have influenced the obtained
SDF spectra for those samples with qX20%.
As a final note, we attempted to extract the topological

description of a composite system by utilizing the SDR
method, it is suggested that in future investigations large
number of samples will be selected and spectroscopic
methods, i.e., optical, scanning electron microscopy, etc.,
will be used to characterize the samples and their
microstructure, which will definitely give better judgement
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of the SDR method, and its correlation to the composite’s
topology.
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