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The distribution of relaxation times approach, a less frequently employed
dielectric data analysis technique, is utilized to better understand the relaxation
characteristics of composites consisting of metal-coated, hollow glass spheres
dispersed in a paraffin wax matrix. The dielectric properties of the composite
samples are measured by means of impedance spectroscopy in the frequency
range 0.1mHz to 10MHz. The application of a mixture law is not appropriate
for the analysis of the frequency-dependent properties of the considered system
on this broad frequency range. However, utilization of the distribution of
relaxation times procedure to study the dielectric behaviour shows clear trends
in the mixtures’ relaxation spectra. Relaxation processes of the paraffin wax
and those specific to the composites are found from the extracted distribution
of relaxation times spectra. The influence of the filler concentration, q, on the
dielectric properties is examined; a relaxation with a narrow distribution
at intermediate frequencies becomes broad with the addition of the filler. This
relaxation, in the form of the low-frequency-dispersions (also known as constant
phase angle) phenomenon, dominates the dielectric properties of the composites
with high bead concentration, q > 0:15. The variation in dielectric properties
of individual samples whose bead concentrations q are nominally the same
is discussed in terms of possible microstructural variations.

1. Introduction

Dielectric properties of materials have attracted both theoreticians and
experimentalists for more than a century. A comprehensive knowledge of the
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dielectric properties of materials nowadays is needed in a wide range of fields,

from medical to food sciences, besides electrical engineering and physics.
Therefore a deeper understanding of dielectric mixtures is of great value, either

for calculating the dielectric constant of a mixture of substances with known
dielectric constants or, knowing the dielectric constant of a mixture of two

components and that of one of the components, for deducing the dielectric
constant of the other component [1–6]. It would also be useful to be able to

estimate the morphology of a mixture of two components, knowing the dielectric
constant of the mixture and of the components [4, 5, 7]. Recently, it has been

shown that the application of the knowledge in dielectric relaxation phenomena
could be used to extract the structure/property relationship in composite

dielectrics [4, 5, 8]. The dielectric data of materials are often analyzed with
empirical expressions; however, here we shall explicitly show that the unorthodox

distribution of relaxation times technique yields significant information about the
dielectric properties of composites.

In this paper we investigate the dielectric properties of paraffin wax filled with

hollow dielectric–metal–dielectric layered spheres [9]. The employed particles are
designed for electromagnetic (radar) absorber applications. Due to the fact

that the metal-coated-hollow spheres are lightweight, using them in a particular
dielectric matrix would make the composite lighter compared to other metal-filled

electromagnetic shielding composite materials. In addition, an extra layer of
dielectric is applied to mitigate conduction because of percolating metal layers

when high inclusion loads are prepared. Samples with various filler volume fractions,
q (nominally q ¼ 0.1, 0.2, 0.3 and 0.5), were prepared and their frequency-dependent

impedances were measured and characterized on a broad frequency window 0.1mHz
to 10MHz at room temperature. The distribution of relaxation times approach,

which yields a relaxation spectrum, is applied to demonstrate its effectiveness.
The method aids a comprehensive understanding of individual relaxations and

their origin; we would be able to differentiate where the relaxations are originated.
The relaxation spectra of the samples vary as a function of the filler concentration.

We also discuss some observed variation in the relaxation time spectra of samples
whose filler concentrations are nominally the same.

2. Background

Dielectric properties of materials are expressed as a complex number known as the
permittivity ", whose real "0 and imaginary "00 parts are proportional to the energy

stored and dissipated in the medium, respectively. Although in theory dielectrics
are considered to be perfect electrical insulators, when measurements are

performed it is usually non-trivial to separate the conduction and polarization
from each other at low frequencies �, where ohmic losses influence the measure-

ments [10–13]. Therefore, any immittance level representation (permittivity "�,
modulus M½� ð"�Þ�1

�, conductivity ��
ð� {"v"

�!Þ and resistivity ��½� ð��
Þ
�1
�) of a

measurement, yields the same information related to the material properties. Here,
"v¼ 8.854 pFm�1 is the permittivity of free space (vacuum), ! ¼ 2p� and { �

ffiffiffiffiffiffiffi
�1

p
.
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Noting this we can in general express the complex dielectric permittivity "� of a
material as follows,

"� ¼ "0 � {"00

¼ "1 þ ��
þ �0ð{"v!Þ

�1: ð1Þ

In equation (1), instantaneous polarizations in the material are summed in the high-
frequency dielectric permittivity value denoted by "1. Dispersions due to conductive
or dielectric relaxations are included in the complex dielectric susceptibility ��, which
has real and imaginary parts �0 and �00, respectively. The conduction (ohmic) losses
from the direct current conductivity �0 are included in the imaginary part of
the complex permittivity "00. Consequently the two material constants "1 and �0
and the frequency-dependent susceptibility can be employed to describe the
electrical/dielectric characteristics of a material. As a note, the listed material
parameters above are functions of state variables, such as temperature, frequency,
electric field, pressure, etc.

As mentioned before, one of the immittance levels would be appropriate for
analysis of the broadband impedance spectroscopy data. We adopt the
frequency-dependent complex dielectric permittivity "�ð!Þ and complex
resistivity ��ð!Þ:

��ð!Þ ¼ ½{"v"
�
ð!Þ!��1: ð2Þ

The complex resistivity representation is more appropriate for conductive systems
[11–14]. At low frequencies the ohmic conductivity �0 of the samples influences
the imaginary part of the permittivity, which hinders the visibility of plausible
relaxation processes. Throughout the text we present our data in this represen-
tation because of its advantage in observing the ohmic losses easily. In addition,
in dispersive systems, sometimes the dielectric losses due to polarization
effects and non-ohmic charge transfer mechanisms are misinterpreted as pure
ohmic losses.

In the distribution of relaxation times formalism, the complex dielectric suscept-
ibility ��

ð!Þ in equation (1) is expressed as [15–24],

��
ð!Þ ¼

ð1
�1

gð�Þð1þ {�!Þ�1d log10ð�Þ ð3Þ

where � is the relaxation time. The distribution function gð�Þ bears valuable
information about the material in hand. (Different notations for the distribution
function have been used; see [17, 23] and reference therein. In this study we denote
it with gð�Þ, which is the distribution of relaxation times in the base 10 logarithmic
scale; the inverse problem at hand is treated in the logarithmic scale.) It can
be related to the structure of the composite [4, 5, 7, 8, 14] and molecular relaxa-
tions [17–19, 25–27]. We adopt a numerical method developed to extract the
distribution function gð�), based on the Monte Carlo technique and Bayesian
statistics. The numerical procedure is explained explicitly elsewhere [7, 14, 20, 28].

Although we have applied a couple of mixture expressions to estimate the
frequency-dependent permittivity of the beads from the measured impedances,
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the obtained results were not sufficiently good to pursue application of the spectral
density representation method for the structure/property relationship analysis of
this system [5, 7, 29]. For this reason, the distribution of relaxation times
approach is employed [20–23]; note the analogy between the distribution of
relaxation times and the spectral density representation approaches [8]. Besides the
frequency-dependent properties, the high-frequency dielectric permittivity values of
the samples can be described with the Lichtenecker mixture expression [30].

3. Materials and methods

The filler particles were formed by sputter deposition of tungsten onto hollow glass
microspheres (3M ScotchliteTMS60 glass microbubbles) [31]. An additional coating
of alumina prevents oxidation of the tungsten and insulates against the formation of
conducting pathways in the composite. This has the benefit that the interfacial
polarization process can be studied in isolation from conduction effects. The core
particle mean radius is 15 mm, but there is significant variation about this mean.

Mixtures were prepared for filler volume fractions in the nominal range 0–0.5 by
hand blending pre-weighed quantities of the filler and matrix on a hot plate
at a temperature above the melting point of paraffin wax (approximately 60�C).
Once the wax had melted the mixture was removed from the heat and mixing
continued until solidification occurred. Samples were then formed by cold-pressing
cylindrical disks with diameter 10mm. Electrodes on either side of the sample
were formed by the application of silver-loaded conductive paint. Impedances
of the samples were measured with a Novocontrol Alpha Dielectric Spectrometer
between 0.1mHz and 10MHz. The experimental measurements were first presented
in reference [9], in which further details can be found.

4. Results and discussion

The complex resistivity �� of the samples as measured are shown in figure 1.
In the inset of figure 1, the real part of the complex conductivity �� is presented
as a function of frequency. First we observe that the samples do not indicate
any obvious ohmic conductivity �0, which would be clearly seen in these graphs
as straight lines; the Argand plot of the complex resistivity should yield a constant
log �0 for log �00! �1, which would be located at the lower right corner in the
figure, or lim!!0 �

0
ð!Þ ¼ �0, which is the far left-hand side of the inset. Observe

that the resistivity increases as the angular frequency decreases, cf. figure 1.
Although �0

ð!Þ of some of the samples appear to be constant in the inset,
the dielectric dispersion is broad as if it is a constant-phase-angle, or low-
frequency-dispersion type of relaxation in these samples [10, 13, 32], which
is clear in the Argand plot. The dielectric response of the samples indicate a sum
of polarization and the constant-phase-angle processes, cf. figure 2. The constant-
phase-angle sort of relaxation behaviour is constantly recorded in densely filled
composites and systems with hopping conductivity [10, 13]. Finally the samples
with the highest bead concentration show a tendency for ohmic losses at low
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frequencies because the complex resistivity plots indicate a knee point around
log �0 � 8 and log �00 � 7:8.

In figure 2, the complex susceptibility of the sample with q ¼ 0:20 is shown
as an illustration for the distribution or relaxation times approach presented here.
The numerical procedure (the solid lines) reconstructs the original data (presented
with open symbols) with good quality. The resolved distribution of relaxation
times for this particular sample is shown as an inset in the figure. Observe that
there are two visible peaks, one at long times � � 100 s and one at short times
� � 1�s. The response in between is very broad, spanning several decades.
The two visible peaks can also be observed in the complex susceptibility �� but
not as clearly as in the relaxation spectra in the inset. If only the losses �00 are
taken into consideration, the response at low frequency (! < 10 rad s�1) can easily
be mistaken for an ohmic loss, �00

� �0ð"0!Þ
�1. However, �0 increases with

decreasing angular frequency and the ohmic conductivity contribution is not
obvious. The numerical procedure applied here, on the other hand, uses both the
real and the imaginary parts of the immittance data. The solutions therefore satisfy
the Kramers–Kronig relations [33] and the actual conductivity can be estimated.
The conductivities of the samples therefore are estimated in each Monte Carlo
step; see [20] for details.

Now that the validity of the applied numerical procedure has been shown,
we can resolve the distribution of relaxation times spectra for all of the samples
in hand. In figure 3, the estimated distributions are plotted as both three-dimensional
and two-dimensional graphs. In figure 3a, the relaxation spectra are shown
as functions of concentration q and relaxation time �. In figure 3b, the filler
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Figure 1. Argand plot of the complex resistivity � of the composites studied here. The arrows
indicate the increasing angular frequency ! and bead concentration q. The inset shows the real
part of the complex conductivity � as a function of angular frequency !.
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concentrations q for the obtained distributions are marked for each curve. The

evolution of the distribution of relaxation times as a function of filler volume frac-

tion is obvious, and two points are worthy of mention:
(i) The relaxation spectra for intermediate times (1 ms9 �91 s) have the

highest variation with increasing bead concentration q when q < 0:2.
Note that there is a new broad relaxation at 100 ms with the introduction
of the filler particles into the paraffin wax which, alone, does not exhibit a
relaxation at around this time scale.

(ii) As the concentration of the filler is increased, with q > 0:1, visible peaks
in the spectra diminish and a clear, very broad distribution emerges.
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Figure 2. The real and imaginary parts of the complex dielectric susceptibility �� as a
function of angular frequency ! for q¼ 0.20. The real (�0; œ) and imaginary ð��00;�Þ

parts are shown with open symbols. The solid lines (—) are calculated with the estimated
resolved distribution of relaxation times gð�Þ, equation (3), shown in the inset.
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Figure 3. The distribution of relaxation times spectra; (a) three-dimensional graphical
illustration and (b) the same data as in (a) but shifted and presented in arbitrary units.
The concentration q of beads is shown on each curve in (b).
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It is striking that the distributions obtained for various samples with nominally
the same filler volume fraction indicate very similar spectra at short times
(�9100ms) whereas, at long times (�0100ms), there are slight differences which
provide clear evidence of structural deviations between the samples, e.g. the distribu-
tion of the filler particles. If the disorder inside the samples and the conduction
and polarization process are taken into consideration, the slight deviations
could be related to or be perceived as the hopping conductivity contribution and
the hopping sites that the charge carriers can access. Samples with a smooth, broad
distribution spectrum have a continuous chain of sites for the charge carries to hop
without any disruption. However, if there are peaks in the spectrum that can be
realized to be an indication of a distribution or more likely an interaction of carriers
with the local environment. It can also be related to the interfacial polarization
and size distribution of fillers [32], which influence the local electric field, and
therefore the internal polarization of a sample. Due to the differences between the
conductivities and permittivities of adjacent phases, the charge carriers relax with
different rates. The pure wax does not indicate any significant dielectric loss due
to the ohmic conductivity. Therefore, although we have not deeply investigated what
the mobile hopping charge carriers might be, the hopping charge carrier species
might originate from the alimuna dielectric layer or the presence of the trapped
ambient humidity during the preparation of the samples.

Although the arguments presented may sound speculative, to our knowledge
there are no other statistical studies on the dielectric properties of these kinds
of composites. The reason for this is that, often, investigations on and results for
a single sample are reported, and deviations between individual (but nominally
similar) samples are not considered. To clarify this point, we show the relaxation
spectra of three individual samples with q ¼ 0:20 filler content in figure 4. Observe
the difference in the spectra for � > 1 s. The internal bead distribution influences the
low-frequency dielectric properties of the composite. Numerical investigation on
disordered binary mixtures have also yielded similar results [32, 34, 35].

To illustrate the way in which the relaxation spectrum of the paraffin wax
changes on introduction of the filler, spectra of the unfilled matrix and dilute
mixtures are shown in figure 5. The relaxation peaks resolved for the matrix alone
(q¼ 0) are marked with ‘a’, ‘b’ and ‘c’ for short times to long times in the figure.
The numerical method extracts the dielectric relaxation at long times, peak c,
clearly, � � 10 s for dilute samples. Since this peak is visible in all the estimated
spectra presented in the figure, with only a slight shift in position as filler is
introduced, this relaxation is supposed due purely to the paraffin wax. The relaxation
at � � 0:1 s, peak b, is on the other hand enhanced with the inclusion of the
filler. This behaviour might be explained by the change of the local field and
its contribution to the amplitude of the dipolar relaxation in the paraffin wax,
as filler is introduced. For this particular relaxation for the samples with q¼ 0.05
and for the relaxation at � � 1ms, peak a, there is a slight shift in the position of
the relaxation as filler is added but the enhancement is still visible. Similar behaviour
was previously observed in low-density polyethylene filled with a small amount
of titanium dioxide composite [36], which again used impedance spectroscopy
as a probing technique. The relaxation at � � 1ms, peak a, becomes broader
with increasing bead concentration, indicating that this relaxation contains an
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actual contribution from the filler bead particles. In Raman spectroscopy, spherical
metal particles are used to enhance the electrical field and improve the signal
quality for better probing of material properties [37]. The enhancement of the
relaxation peaks observed here as filler is introduced appears to be a similar
phenomenon.
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Figure 5. The distribution of relaxation times spectra for the composites with q < 0:1. The
solid (—) and dotted (	 	 	 	 	 	) lines represent the spectra for the samples with q¼ 0.05.
The dashed (- - -) and chain (– 	 –) lines represent the spectra for the samples with q¼ 0.025.
The relaxations instinct to the matrix are labelled with ‘a’, ‘b’ and ‘c’.
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Figure 4. The distribution of relaxation times spectra for three composite samples with
q¼ 0.20.
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The material constants, ohmic conductivity �0 and estimated instantaneous
dielectric permittivity "1 are shown as a function of bead concentration in figure 6.
The ohmic conductivities of the samples increase with increasing bead content,
figure 6a. However, the values show some scatter, which is presumed due to the
topological differences between the samples. The error bars are due to the statistical
analysis of the result obtained from the Monte Carlo procedure. For clear ohmic
losses the error bars are negligible, see [20]. The instantaneous permittivity
"1½� "ð! > 1MHzÞ� of the samples exhibits a clearer dependence on the filler
fraction. Even the deviation in the permittivity values between individual samples
with the same nominal filler fraction is smaller than seen in the values of �0.
The permittivity data can successfully be fitted with an exponential relation.
Extrapolation of the fitted curve in figure 6b yields a high-frequency dielectric
permittivity value for the beads, "i 1 � 40. The data can also be well-approximated
by the Lichtenecker [30] expression with the high-frequency permittivity of the
matrix "m1 ¼ 4 and "i1 ¼ 40, also shown in figure 6b.

5. Conclusions

In this letter we have shown that the dielectric properties of composites can be
investigated with the distribution of relaxation times approach. The results have
indicated that the dielectric relaxations intrinsic to the matrix can be separated
from the relaxation spectra of the filled composite. In addition, differences between
the relaxation spectra of nominally similar samples can also be observed and
investigated. In the future, this kind of observation could be used to tailor the
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Figure 6. (a) The ohmic conductivity �0 and (b) the permittivity "1 of the composite
samples as a function of bead concentration q. The solid line (—) in (a) is an exponential
fit �0 ¼ B expðAqÞ with B ¼ 4:03
 10�17 and A¼ 32.5. The solid line (—) in (b) is an
exponential fit "1 ¼ b expðaqÞ with b¼ 3.80 and a¼ 2.34. The inset in (b) illustrates the
permittivity of the inclusion beads calculated from the Lichtenecker [30] expression; the
solid horizontal line in the inset denotes the high-frequency permittivity of the inclusions,
"i 1. The dashed line (- - -) in (b) is the Lichtenecker [30] expression calculated with the
high-frequency permittivity of the matrix "m1 ¼ 4 and "i1 ¼ 40.
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design of the material. The high-frequency, "ð! > 1MHzÞ, dielectric permittivity
value for the filler particles obtained via the distribution of relaxation times
approach was shown to be well-approximated by the Lichtenecker mixture formula.

In order to design better composite materials for electrical applications,
it is obligatory to better understand the polarization and conduction mechanisms
in composites. The utilized non-parametric dielectric data analysis method has an
advantage over other parametric methods, which are based on a priori assumptions,
such as the number of relaxations, type of relaxation model, initial guess, etc.
As shown explicitly here, this non-parametric method does not suffer from these
drawbacks.
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