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Abstract
The ability to control the frequency at which a dielectric material exhibits
maximum loss (the relaxation frequency) is of interest in
telecommunications and radar absorption. A theoretical investigation of the
behaviour of the complex bulk permittivity of a composite material with
coated, spheroidal filler particles is presented. In the model, the filler
particles are replaced mathematically by electric multipole sources located
at their centres (Harfield N 2000 J. Mater. Sci. 35 5809–16). It is shown
how factors such as particle shape, orientation with respect to the applied
electric field, thickness of coating and permittivity value of the individual
phases influences the bulk permittivity of the composite material. For a
composite with coated filler particles, one or two relaxation frequencies may
be observed. Employing the theory of Pauly and Schwan (Hanai T 1968
Electrical properties of emulsions Emulsion Science ed P Sherman (London:
Academic)), particular attention is paid to the way in which the relaxation
frequencies are affected by the material parameters.

1. Introduction

The dielectric dispersion characteristics of a composite
material can be controlled by adjusting the material parameters
of the individual phases. In a composite with coated
filler particles, these parameters are the particle volume
fraction, shape, orientation and layer thickness, and the
permittivity values of the phases. Of particular interest in
telecommunications and radar absorption is the frequency at
which a material exhibits maximum loss, and the magnitude of
that loss. A systematic study, of the relaxation processes which
occur in a material composed of coated filler particles dispersed
in a matrix, is presented here. Indications are given as to how
to achieve maximum absorption at a chosen frequency.

This study is based on two models of the bulk permittivity
of a composite material. The first assumes that the particles
are sufficiently well separated that the electric potential in the
neighbourhood of any one particle is not influenced by the
presence of the others [1]. The precise spatial arrangement of

1 Formerly N Harfield.

the particles is not important. The analysis results in closed-
form expressions for the bulk permittivity of the material, ε(ω),
and for the frequencies at which relaxation occurs, ν1 and ν2.
The second model accounts for perturbation of the electric
potential in the vicinity of a particle, due to its neighbours, by
arranging the particles on a simple-cubic lattice and describing
them mathematically as electric multipole source distributions
[2]. This leads to greater accuracy in the result for ε, expressed
as a truncated series expansion, although complexity of the
expressions prohibits obtaining explicit forms for ν1 and ν2.
The first model is for spherical filler particles whereas the
second can be applied also in the case of spheroidal particles.

2. Theory for spherical filler particles

Consider a time-harmonic electric field, E = E0 exp(−iωt),
where ω = 2πν is the angular frequency of the excitation,
ν being the frequency measured in hertz. The constitutive
relation connecting the electric field and the electric flux
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density, D, is
D = ε0ε

′
j E, (1)

where ε′
j (real) is the permittivity of the j th medium, relative

to the permittivity of free space ε0 = 8.85 × 10−12 F m−1.
The Maxwell–Ampère law, combined with the constitutive
relation (1), suggests defining a complex permittivity

εj = ε′
j + iε′′

j with ε′′
j = σj

ωε0
, (2)

where σj is the conductivity of the medium.
In this section, two methods are summarized, by which

the bulk complex permittivity of a composite with coated,
spherical filler particles may be calculated. The first is due
to Pauly and Schwan [1] and treats the system as a dilute
mixture of dispersed particles. Closed-form expressions for
the bulk permittivity of the system, ε(ω), and the relaxation
frequencies, ν1 and ν2, are obtained. The second method treats
the particles mathematically as electric multipole sources [2].
This means that higher order interactions between the filler
particles are accounted for. The resulting expression for ε(ω)

is more accurate, and naturally more complicated, than that
obtained by Pauly and Schwan. Explicit expressions for the νk

are not obtained in this model due to the prohibitive complexity
of the analysis.

2.1. Dipole model

In this summary of the theory due to Pauly and Schwan [1],
the development as laid out by Hanai [3] is followed. First,
the electric potential, exterior to one filler particle in a uniform
electric field, is written down according to potential theory
of the electric field. Then the potential exterior to a spherical
region of radius D, containing a collection of N dispersed filler
particles, is written down by superposition of the potentials due
to the individual particles. The expression for the potential is
a function of the permittivity values, εj , and volume fractions,
fj , of the individual phases, j = 1, 2, 3, as shown in figure 1.
It is implicit in this model that the particles do not interact.

x

z

a2 a1 1
2

3

Figure 1. Cross-section of a coated sphere.

The potential exterior to the collection of N particles is then
equated with that due to a sphere of radius D with bulk
permittivity ε. Thus, an expression for ε is obtained in terms
of the permittivities and volume fractions of the individual
phases:
ε

ε3
= 1 + 3 [f (ε1 + 2ε2)(ε2 − ε3) + f1(ε1 − ε2)(2ε2 + ε3)]

×
[
(ε1 + 2ε2)(ε2 + 2ε3) + 2

(
f1

f

)
(ε1 − ε2)(ε2 − ε3)

−f (ε1 + 2ε2)(ε2 − ε3) − f1(ε1 − ε2)(2ε2 + ε3)

]−1

.

(3)

Here, f = f1 + f2 is the volume fraction of the whole particle
(core and layer together). Equation (3) is identical to that
obtained by Sihvola and Lindell [4] for a three-phase mixture.
Hanai shows how equation (3) may be rearranged to reveal two
Debye-type dispersions,

ε = ε′
∞ +

ε′(0) − ε′
i

1 − iωτ1
+

ε′
i − ε′

∞
1 − iωτ2

+ iε′′(0), (4)

occurring at frequencies νk = 1/(2πτk), k = 1, 2. In
equation (4), ε′

∞ = limω→∞(ε) and ε′
i is a permittivity

value intermediate between ε′(0) and ε′
∞ at which ε′(ω) may

plateau between the two relaxation processes. Closed-form
expressions for the terms in equation (4) are given as functions
of the material parameters in [3]. Of particular interest in this
paper is the way in which the relaxation frequencies depend
on the parameters of the system, so equations for the νk are
reproduced in the appendix.

2.2. Multipole model

Following the method of Zuzovsky and Brenner [5] and
Sangani and Yao [6], the bulk permittivity of a composite
material can be obtained for closely approaching, coated
particles by treating them as multipole source distributions
located at their centres [2]. In order to account for interactions
between the filler particles, they are arranged on the sites
of a simple-cubic lattice. This permits the electric potential
to be expressed as a periodic, singular solution of Laplace’s
equation. The potential in this form is then matched with
an expression for the potential exterior to one representative
coated particle, and the following expression for ε obtained in
terms of the parameters of the system.

ε

ε3
= 1 − 3f

[
1

L23
1

+ f + c1f
10/3 + c2f

14/3 + O(f 18/3)

]−1

.

(5)

The series has been truncated at a point where, to obtain
further terms, the mathematical analysis becomes prohibitively
lengthy. The method lends itself to numerical generalization,
however, where greater accuracy could be obtained. In
equation (5), the ci are given by

c1 = − 16(3/4π)10/3(a′
20)

2

1/L23
3 + 20(3/4π)7/3a′

30f
7/3

, (6)

c2 = −176

(
3

4π

)14/3

L23
5 (a′

30)
2, (7)
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where L23
s is a coefficient obtained by applying continuity

conditions on the electric potential at the surface of the filler
particles.

L23
s = 1 − ρ23gs

ρ23gs + (s + 1)/s
, (8)

wherein

ρij = εi

εj

, (9)

gs = 1 − [(s + 1)/s](f1/f )(2s+1)/3L12
s

1 + (f1/f )(2s+1)/3L12
s

(10)

and L12
s is a coefficient obtained by applying continuity

conditions on the electric potential at the interface between
the core and layer of the filler particles; regions 1 and 2.

L12
s = 1 − ρ12

ρ12 + (s + 1)/s
. (11)

The coefficients a′
nm = l2n+1anm, where l is the side length of

the unit cell of the simple-cubic lattice, arise in summing over
an infinite number of lattice sites and have numeric value [6]

a20 = 3.108 227, a30 = 0.573 329 3.

Equation (5) reduces to equation (3) if only the first two
terms in the series, (L23

1 )−1 + f , on the right-hand side of (5)
are retained.

3. Example calculations for spherical filler particles
with a lossy core

Consider a composite material in which the coated filler
particles have a core which is lossy dielectric (complex
permittivity). If the particle coating is lossless, one relaxation
process is observed. It is associated with the entrapment of
free charges, found in the core, at the core-layer interface.
This is an example of interfacial polarization. If the coating
is lossy, the situation is more complicated and two relaxation
processes may be observed depending on the relative values of
the complex permittivity in the core and surface layer of the
filler particle.

These effects are investigated systematically here by using
theoretical models described above. Results from the closed-
form expressions for the relaxation frequencies, yielded by the
dipole model, are shown to agree quite well in many cases with
results calculated using the multipole model.

In this investigation, the matrix is assigned the material
properties of free space, ε3 = 1 + i0, since the focus is on the
role of the filler particles in determining the bulk permittivity
of the composite, ε. All quoted permittivity values are relative
to the permittivity of free space, ε0 = 8.85 × 10−12 F m−1.

3.1. Lossless layer

In figure 2, the calculated bulk permittivity is shown for a
material with filler particles whose layer is lossless and whose
core is lossy. The particle volume fraction, f , is 0.4 and

(a)

(b)

Figure 2. Bulk permittivity ε as a function of frequency, ν. The
particle core is lossy dielectric with ε ′

1 = 1, 10 or 100 and
σ1 = 0.01 S m−1. The particle layer is lossless with ε ′

2 = 1 or 10.
All permittivity values are relative to the permittivity of free space,
ε0 = 8.85 × 10−12 F m−1. The particle volume fraction, f , is 0.4 and
the layer thickness is 10% of the particle radius, denoted t = 0.1.

the normalized layer thickness t = 0.1 where, employing the
notation of figure 1,

t = a2 − a1

a2
. (12)

The real permittivity of the layer is assigned values ε′
2 = 1

and 10. The real permittivity of the core takes values ε′
1 = 1, 10

and 100 and the conductivity of the core, σ1, is 0.01 S m−1.
It can be seen, from figure 2, that the low-frequency

limiting permittivity value, ε(0), changes as a function of ε′
2.

This contrasts with results for the converse case in which the
layer is lossy and the core is lossless [7]. It remains true
that, in the lossy phase, the imaginary part of the complex
permittivity is much larger than the real part at low-frequency
but here ε′

2 plays a significant role in determining ε(0) because
of its prominent location at the exterior of the filler particles.
Previously, in the case of a lossy layer and lossless core, the
imaginary part of the layer permittivity dominated at low-
frequency and variations in ε′

2 and ε′
1 did not result in a change

in ε(0). The high-frequency limiting value of bulk permittivity
seen in figure 2 is governed by both ε′

1 and ε′
2.

Figure 2(b) shows that, as the real core permittivity
increases, the loss peak reduces in magnitude and shifts to
lower frequency. If the real permittivity of the layer increases,
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Figure 3. Relaxation frequency as a function of ε ′
1 and ε ′

2. Other
parameters are as in figure 2. Relaxation frequencies from figure 2
are also plotted.

the family of curves, obtained by changing ε′
1, also shifts to

lower frequency but the loss peaks increase in magnitude.
The way in which the relaxation frequency varies as a

function of ε′
1, for ε′

2 = 1 and 10, is shown in figure 3. All
other parameters are as shown in figure 2. These curves are
calculated by means of equation (19), derived from treating
the filler particles as dipole sources in the applied electric
field. In this case of a lossy core and lossless layer, only
one relaxation process is observed, with frequency ν2. The
relaxation frequency is highest for ε′

1 = 1, declining as ε′
1

increases. ν2 also declines as ε′
2 increases.

The three values of relaxation frequency seen in figure 2
and calculated using the multipole model are also plotted. The
results of the dipole and multipole models agree better for
ε′

2 = 1 than for ε′
2 = 10. For ε′

1 = 1, the discrepancies are
roughly 2% and 12%, respectively. This is to be expected
since there are stronger variations in the electric potential near
the particles when the dielectric contrast between the phases is
higher, and these variations are more accurately described by
the multipole model.

3.2. Lossy layer

3.2.1. Effect of σ1. In figure 4, the bulk permittivity is shown
for a composite material with filler particles whose core and
layer are both lossy. σ2 is fixed at 0.01 S m−1 while σ1 takes
several values, as indicated, and ε′

1 = ε′
2 = 1. f = 0.4

and t = 0.1. When the core and layer both have the same
conductivity, there is a single loss process since the particle
is homogeneous. As the core conductivity increases, a second
loss peak emerges and moves to increasingly higher frequency.
This indicates that ν2 is strongly influenced by σ1, when
σ1 � σ2.

The way in which ν1 and ν2 depend on σ1 is shown for
this case in figure 5. It can be seen how, when σ1/σ2 � 1,
ν1 becomes independent of σ1, tending to a constant value,
whereas ν2 ∝ σ1. Hence, as σ1/σ2 → ∞, the frequency
separation between the loss peaks increases. Whenσ1/σ2 � 1,
both ν1 and ν2 tend to constant values, independent of σ1.
The loss peak associated with ν2 is negligible in magnitude
compared with that at ν1 however, for σ1/σ2 � 1, so,
practically speaking, only ν1 is important in this regime.

(a)

(b)

Figure 4. ε as a function of ν and σ1. ε ′
1 = 1 and σ1 takes a variety

of values, as indicated. ε ′
2 = 1 and σ2 = 0.01 S m−1. f = 0.4 and

t = 0.1.

ν1

ν2

ν1 from previous figure

ν2 from previous figure

Figure 5. Relaxation frequencies ν1 and ν2 as functions of σ1.
σ2 = 0.01 S m−1 and other parameters are as in figure 4. Values of
ν1 and ν2 obtained from figure 4 (multipole model) are also shown.

3.2.2. Effect of σ2. Now observe the effect of holding σ1

fixed at 0.01 S m−1 and varying σ2, figure 6. Other parameters
remain as shown in figure 4. As the layer conductivity
decreases, ν1 moves to increasingly lower frequency. This
indicates that ν1 is strongly influenced by σ2, when σ2 � σ1.
The way in which the relaxation frequencies depend on σ2 is
shown in figure 7. ν1 is observed to be proportional to σ2 for
both σ2/σ1 � 1 and �1, with a nonlinear region between the
asymptotes. ν2 becomes independent of σ2 as σ2/σ1 → 0. For
σ2/σ1 → ∞, ν2 is shown in figure 7 to be proportional to σ2,
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(a)

(b)

Figure 6. ε as a function of ν and σ2. ε ′
1 = ε ′

2 = 1. σ1 = 0.01 S m−1

and σ2 takes a variety of values, as indicated. f = 0.4 and t = 0.1.

ν1

ν2

ν1 from previous figure

ν2 from previous figure

Figure 7. Relaxation frequencies ν1 and ν2 as functions of σ2.
σ1 = 0.01 S m−1 and other parameters are as in figure 6. Values of
ν1 and ν2 obtained from figure 6 (multipole model) are also shown.

but in practice, the magnitude of the loss process is negligible
compared with that at ν1 in this regime.

By comparing the results of figures 4 and 6, it can be seen
that, if the ratio σ1/σ2 is maintained while σ1 and σ2 vary,
the curves describing the ε(ν) preserve their shape but shift
in frequency in proportion to the change in conductivity. This
point is discussed in [7].

3.2.3. Effect of ε′
1. In figure 8, the case in which

σ1 = 1.0 S m−1, shown in figure 4, is taken and the real
permittivity of the particle core is varied. It is clear that ε(0),

(a)

(b)

Figure 8. ε as a function of ν and ε ′
1. ε ′

1 takes a variety of values, as
indicated, and σ1 = 1.0 S m−1. ε ′

2 = 1 and σ2 = 0.01 S m−1.
f = 0.4 and t = 0.1.

εi and the low-frequency loss process are largely unaffected by
adjusting ε′

1, whereas the effect on ε∞ is strong. This is due to
the fact that, in the high-frequency regime, the imaginary part
of the complex permittivity becomes small, being inversely
proportional to ν, and hence ε∞ is governed by ε′

1 and ε′
2.

As ε′
1 increases, the magnitude of the higher frequency loss

process declines until eventually it is negligible in comparison
with that at ν1.

3.2.4. Effect of ε′
2. In figure 9, the real permittivity of the

particle layer is varied for the case in which σ1 = 1.0 S m−1,
shown in figure 4. Both εi and ε∞ are strongly affected by
adjusting ε′

2.

3.2.5. Effect of t . The bulk permittivity of a composite
with filler particles whose core and layer are both lossy is
shown as a function of layer thickness in figure 10. f = 0.4,
σ1 = 1.0 S m−1, σ2 = 0.01 S m−1 and ε′

1 = ε′
2 = 1. In the

case of no layer (t = 0) or full-thickness layer (t = 1) a
single loss peak is observed since the filler particles are then
homogeneous. For intermediate values of t , two loss peaks are
seen, demonstrating the presence of constituent materials with
different values of conductivity.

4. Multipole theory for spheroidal filler particles

Consider a composite with coated, spheroidal filler particles
located at the nodes of a simple-cubic lattice. One
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(a)

(b)

Figure 9. ε as a function of ν and ε ′
2. ε ′

1 = 1 and σ1 = 1.0 S m−1.
ε ′

2 takes a variety of values, as indicated, and σ2 = 0.01 S m−1.
f = 0.4 and t = 0.1.

representative filler particle is shown in figure 11. The
particles are aligned with one another and with one of the
lattice vectors, leading to anisotropy in the bulk permittivity,
now a second-order tensor with two independent components
εxx (= εyy) and εzz. Following the mathematical method
describing a similar composite with spherical filler particles,
outlined in section 2.2, expressions for εxx and εzz may be
obtained by suitably transforming the multipole expansion
for the electric potential, previously written in terms of
spherical harmonics, into spheroidal harmonics. This periodic,
singular solution of Laplace’s equation is then matched with
an expression for the potential exterior to a representative filler
particle, derived from potential theory of the electric field,
also written in terms of spheroidal harmonics. Details are
given in [2, 9]. The following expressions for εxx and εzz are
obtained

εxx

ε3
= 1 − 4πλ3

[
− 3

2L23
11

+
4π

3
λ3 + O(λ5)

]−1

, (13)

εzz

ε3
= 1 − 4πλ3

[
3

L23
10

+
4π

3
λ3 + O(λ5)

]−1

. (14)

In the above expressions, λ = d/l, where 2d is the interfocal
length of the spheroid, and L23

st is a coefficient obtained by
applying continuity conditions on the electric field at the

(a)

(b)

Figure 10. ε as a function of ν and t . ε ′
1 = ε ′

2 = 1, σ1 = 1.0 S m−1

and σ2 = 0.01 S m−1. f = 0.4.

x

z

d

-d

a2
a1

b2

b1

1

2

3

ξ1

ξ2

Figure 11. Cross-section of a coated spheroid.

surface of the filler particles:

L23
st = [(1 − ρ23)P

t
s (ξ2)P

t
s (ξ2)

′ + L12
st [P t

s (ξ2)
′Qt

s(ξ2)

−ρ23P
t
s (ξ2)Q

t
s(ξ2)

′]][ρ23P
t
s (ξ2)

′Qt
s(ξ2)

−P t
s (ξ2)Q

t
s(ξ2)

′ + L12
st (ρ23 − 1)Qt

s(ξ2)Q
t
s(ξ2)

′]−1.

(15)
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In equation (15), ρij is given in equation (9), P t
s is a Legendre

function of the first kind and Qt
s a Legendre function of the

second kind. ξ1 and ξ2 are spheroidal coordinates describing
the surface of region 1 (the particle core) and the outer surface
of region 2 (the layer), respectively. The prime indicates the
derivative normal to the surface;

Lt
s(ξj )

′ ≡ dLt
s(ξ)

dξ

∣∣∣∣
ξ=ξj

(16)

with L either P or Q. L12
st is a coefficient obtained by applying

continuity conditions on the electric field at the interface
between the particle core and layer,

L12
st = 1 − ρ12

ρ12[Qt
s(ξ1)/P t

s (ξ1)] − [Qt
s(ξ1)′/P t

s (ξ1)′]
. (17)

As quoted in equations (13) and (14), the expressions for
the εjj are truncated forms of those given in [2], which are
in fact accurate up to order λ14, equivalent to the accuracy
of the expression for ε for spherical filler particles given in
equation (5). The calculations of the following section use
the full form of the equations given in [2] and are accurate to
order λ14. Equations (13) and (14) are for prolate spheroids,
with a/b > 1. Equations for oblate spheroids (a/b < 1) are
obtained by replacing d with −id in (13) and (14) [10].

5. Example calculations for spheroidal filler
particles with a lossy core

The bulk permittivity of a composite material with coated,
spheroidal filler particles whose core and layer are both lossy
is shown in figures 12 and 13. The material parameters
are ε′

1 = ε′
2 = 1, σ1 = 1.0 S m−1 and σ2 = 0.01 S m−1.

The particle volume fraction, f , is 0.02, lower than in the
results calculated above for spherical particles, to permit aspect
ratios a/b in the range from 0.2 to 5.0. For spheroidal particles
arranged on a simple-cubic lattice, with axis of rotation parallel
to one of the lattice vectors, the maximum volume fraction,
fmax, for non-overlapping particles is

fmax =




π

6

(
b

a

)2
a

b
� 1,

π

6

(a

b

) a

b
� 1.

The volume fraction of the particle core, f1, is held constant
at 0.014 58, corresponding to layer thickness t = 0.1 when
the particle aspect ratio a/b = 1. Note that, in this discussion,
a and b refer to the semi-axis lengths of the whole filler particle,
corresponding to a2 and b2 in figure 11.

5.1. Effect of a/b and particle orientation in the applied
electric field

In figures 12 and 13, the effect of varying the particle aspect
ratio, on εxx and εzz, respectively, is shown. In figure 12
the electric field is applied parallel to the x-axis, figure 11,
perpendicular to the rotation axis of the spheroid, whereas in
figure 13 it is applied parallel to the z-axis, parallel to the
rotation axis of the spheroid. In both cases, the frequency
at which the first relaxation occurs is unchanged by adjusting

(a)

(b)

Figure 12. εxx as a function of ν and a/b. ε ′
1 = ε ′

2 = 1.
σ1 = 1.0 S m−1 and σ2 = 0.01 S m−1. f = 0.02 and f1 = 0.014 58.

a/b. The frequency of the second loss process declines, and the
magnitude of the loss increases, as the dimension of the particle
increases in the direction parallel to the applied electric field.
This means that the loss processes diverge for εxx as a/b → ∞
and diverge for εzz as a/b → 0.

6. Conclusions and comments

Comparing figures 4 and 5 with 6 and 7 it may be concluded
that, if σ1 > σ2, there will be two loss processes whose
relaxation frequencies diverge as σ1/σ2 increases. If σ1 is
increased, ν2 moves to higher frequency in proportion with the
change in σ1. If σ2 is reduced, ν1 moves to lower frequency.

If σ1 > σ2 so that two relaxation processes are evident,
then the effect of adjusting ε′

1 and ε′
2 can be seen from figures 8

and 9. Adjusting ε′
1 has the effect of changing ε∞ alone

whereas adjusting ε′
2 changes the value of both εi and ε∞.

It may be concluded that, in this case, the magnitude of the
relaxation at ν1 is strongly influenced by ε′

2 and that at ν2 by ε′
1.

Figures 12 and 13 show the effect, on the two components
of the anisotropic bulk permittivity, of varying the particle
aspect ratio a/b while the volume fractions of the three-phases
remains constant. It is noticeable that the magnitude of the
loss increases dramatically as the dimension of the particle
increases in the direction parallel to the applied electric field.
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(a)

(b)

Figure 13. εzz as a function of ν and a/b. Other parameters are as
in figure 12.

Practically speaking, it is usually the case that dispersion
curves measured experimentally are broader than those
predicted by theory (see, e.g. [8]). This is likely to be true due
to difficulty in tightly controlling the specifications of the filler
particles; their size, shape and, very importantly in this case,
the thickness and uniformity of the layer. Overcoming these
material challenges will permit practical exploitation of the
fine features observed in the dispersion curves here.

Appendix

For a system of coated, spherical filler particles dispersed
in a matrix, analytical expressions for the frequencies

at which relaxation processes occur, ν1 and ν2, have been
determined by Pauly and Schwan [1,3]. These may be written

2πν1 = 2T2

T1 +
√

T 2
1 − 4T2T3

, (18)

2πν2 =
T1 +

√
T 2

1 − 4T2T3

2T3
(19)

for ν1 < ν2, where the Ti are given in terms of the permittivity
values of the individual phases, εj , and their volume fractions,
fj (see figure 1).

T1 = [(1 − f )(ε′
2a + σ2c) + (2 + f )(ε′

3b + σ3d)]ε0, (20)

T2 = (1 − f )σ2a + (2 + f )σ3b, (21)

T3 = [(1 − f )ε′
2c + (2 + f )ε′

3d]ε2
0 (22)

and

a =
(

1 +
2f1

f

)
σ1 + 2

(
1 − f1

f

)
σ2, (23)

b =
(

1 − f1

f

)
σ1 +

(
2 +

f1

f

)
σ2, (24)

c =
(

1 +
2f1

f

)
ε′

1 + 2

(
1 − f1

f

)
ε′

2, (25)

d =
(

1 − f1

f

)
ε′

1 +

(
2 +

f1

f

)
ε′

2. (26)

ε0 = 8.85 × 10−12 F m−1 is the permittivity of free space and
f = f1 + f2 is the volume fraction of the whole particle.
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