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The bulk complex permittivity of a composite material is calculated analytically. The filler
particles are spheroidal and may be coated with a surface layer whose intrinsic material
properties differ from those of the core. Making the assumption that the filler particles are
arranged on a simple-cubic lattice, interactions between the particles are accounted for by
treating each particle mathematically as a multipole source. The coefficients of the multipole
expansion, suitably-truncated, are determined by solving a matrix equation obtained

by matching with the general solution of Laplace’s equation in the interstitial domain,
expressed in terms of an expansion in spheroidal harmonics. Matching is carried out at
the surface of a representative particle according to electromagnetic continuity conditions.
Example calculations demonstrate the effect of varying filler volume fraction, intrinsic
material properties, layer thickness, particle shape and frequency. Results are shown

to agree with independent work, where available. © 2000 Kluwer Academic Publishers

1. Introduction this has the effect of increasing the density and weight
Composite materials have numerous applications thaidf the resulting composite, which is a disadvantage for
exploit their electromagnetic properties. These appliinany applications. A thin metal layer deposited on a
cations include static shielding of delicate electroniclow-density particle may perform as well electrically
components and radar absorption. Itis useful to be ablas a similar but solid metal particle, depending on the
to predict the bulk behavior of a composite from knowl- frequency of operation, but with the advantage of much
edge of the intrinsic properties of its constituents, sinceeduced weight [4]. A thin surface layer may also be
this ability is a fundamental requirement in the effi- used in practice to improve wetting of the filler by the
cient design of novel materials. There is mathematicamatrix material and, conversely, the effect of imperfect
equivalence in the calculation of a number of physicalbonding between the particle and matrix phases
parameters including electrical and thermal conductivcan be simulated by a layer with suitable properties
ity, dielectric permittivity and magnetic permeability [5].
[1]. This fact has been partly responsible for the rich The work presented here will be confined to
abundance of contributions on the subject, as workerspheroids whose axes of rotation are aligned with each
in many fields have addressed the problem of calcuether and with one of the lattice vectors, although the
lating the properties of a material with more than onemethod of solution lends itself to treat spheroids arbi-
phase. Hence, the works cited by this paper are motitrarily oriented with respect to the lattice [6]. Also, a
vated by problems in thermal and electrical conductionsingle layer coating the filler particles will be consid-
and in fluid mechanics. The numerous methods whiclered here, but a straightforward extension of the anal-
abound all have to take into account the relative spatiaysis would give the solution for multiple layers. A fur-
distributions of the phases in some way. ther extension, in which more than one particle can be
In this work, filler particles in a matrix are assumed positioned within the unit cell of the simple-cubic lat-
to occupy the sites of a simple-cubic lattice. Thistice [7], is feasible and permits modeling of composites
regular spatial arrangement permits calculation of thewith distributions of filler particle size, shape and ori-
bulk complex dielectric permittivity to be predomi- entation, with a variety of spatial distributions.
nantly analytic [2, 3]. Particles are considered to be The following section of this paper contains the the-
spheroidal in shape and may be coated with a surfaceretical development. In Section 3, results of some ex-
layer whose intrinsic properties differ from those of ample calculations are presented in which the effect of
the core. Modeling a coated particle has practicavarying the filler volume fraction {), intrinsic mate-
relevance in a number of ways. For example, it is ofterrial properties of the phases, layer thickness, patrticle
desirable to enhance the electrical conductivity of ashape and frequency are examined. Good agreement
polymer matrix by loading it with metal particles, but with independent work is shown.
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2. Theory z
The theoretical basis of this work has been given in de-

tail elsewhere [6, 8] in the context of calculation of the —
bulk electrical conductivity of a two-phase composite, 3
so a brief summary will be given here, with closer at- 7 2
tention paid to calculation of the complex permittivity a d
and treatment of the surface layer on the filler particles.

2.1. Field equations
Begin with the well-known Maxwell-Amere Law:

aD

whereH is the magnetic field) is the current density

and D is the di5p|acement current. Now assume thafigure 1 Cross-section of a coated prolate spheroid with axis of rotation

the system behaves Iinearly andthatthe following ”neaparallel toz. Domain 1 is the particle core, domain 2 is the particle layer
. N . . - ¢ 1 qand the interstitial domain is denoted by 3.

macroscopic constitutive relations with the electric field niersti n y

E can be written:

2.2. Electric potential
(Y =0 - (E) (2) Define the local electric potentia; in terms of the
= local electric field as follows:
(D) = eoe” - (E). ®3)

Ei(r) = —V&i(r). (€)

Above, the angled braces denote macroscopic values,
€o is the permittivity of free space and ande’ are  The above definition assumes a non-magnetic material,
second-order tensors describing the bulk conductivity.e.
and real permittivity respectively. Assuming that the
excitation is time-harmonic, with behavior exg(wt), V x Ej(r) =0.
the Maxwell-Amgere law implies that

The subscript =1 denotes the particle core domain,

V x (H) = —iwege - (E) (4) 1 =2the particle layer domaiin~= 3 the interstitial do-

main andr is the position vector. Applying constitu-
tive relations (2) and (3) locally and substituting into
(1) with (8) shows that the electric potential obeys the
Laplace equation everywhere in the material,

where the complex permittivity is defined

e=¢e +id 5)
V2oi(r)=0, i =123 9)
with . . L .
Applying a uniform electric field E), the potential at
_ 5 any position in the composite can be expressed
€' =—. (6)
WEQ

®i(r) = () —r - (E) (10)

In the following development; is the quantity which \whered is a spatially periodic function
will be determined.

Foramaterial consisting of spheroids arranged on the d(r) = O(r +rp) (11)
nodes of a simple-cubic lattice such that their axes of
rotation coincide with one of the lattice vectors, showngnd the set of vectors, locate the nodes of the lattice

in Fig. 1, there are only two independent componentgt which the particles are positioned.
of e:

exx 0 0 2.3. Particles as multipoles
e=| 0 &, 0]. @) Eguation 9 can be solved by rgpla_cing the particles k_)y
0 0 « singular multipole source distributions located at their
22 centers, analytically continuing the interstitial fields
_ into the space occupied by the particles. A low-order
This means that can be found by solving two similar solution of this problem, valid for volume fractions up
scalar problems in which a unit electric field is appliedto about 30%, may be obtained by assuming that each
parallel tox, giving exx, and parallel te, giving €;. particle behaves as a dipole field source. This approach
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was adopted by Maxwellin 1881 [9] and leads to a solu- z
tion which does not account for particle-particle inter-
action. To take these interactions into consideration and 3 3

X

N

to deal with non-spherical particles, higher-order multi- a,| 71
poles are required. The contribution to the field from all a, /\
particles is obtained by summing over the lattice sites, Y v

following a Fourier method due to Hasimoto [10]. As /

shown in references [6] and [8], the following expres-
sion can be established:

. 1
b = @ — ,~BVS. (E). (12)

in which @ is a constant potentiaB is the partial ~T'9ure 2 Cross-section of a coated sphere.

differential operator

X \ electric potential be continuous across the interfaces:
§2(m+n+p

B = ZZZU“”"W (13)

andSis a periodic, singular solution of Laplace’s equa-
tion which may be expressed

Pi(r-) = dipa(ry), i =12 (16)

wherer_ andr_ denote points on the interface ap-
proached from regionisandi + 1 respectively. Conti-
nuity of the normal component a&f+ aD/dt leads to

1 2mr?
S:F_C+ 31 " ")
0 adi(r 0D y1(r .
co m<n/2 €i IN =€i+1w ,i=12 (17)

r=r_ r=r,

+ Z; 2% anmr 2"PyM(cosh) cos 4ng  (14)
n= m=

whereN is the co-ordinate normal to the interface and
In (14), c is a constant with value 2.8379297 [11}, ¢, ¢, andes denote the intrinsic, homogeneous permit-
is the volume of the unit cell and tH&" are Legendre tivities of the constituent phases. The conditions stated
functions of the first kind of degree and orderm.  n(16) and (17) will now be applied to general harmonic
Further,r, 6, ¢ are the usual spherical co-ordinatesexpansion solutions of (9).
originating at the center of the particle. Derivatives of The general solution of (9) in terms of spherical har-

increasing order irB correspond to multipoles of in- monics, appropriate for the spherical particle shown in
creasing order. Thus, the accuracy of the solution igig. 2, is written

determined by the number of terms retained on trunca-

tion of the series. To achieve a certain level of accuracy, oo N

more terms are required as a) the particle shape departs by = Z GhmYy" (18)
from being spherical and b) the difference between the n=0 m=0

material properties in each phase becomes greater. The s n

expression o5 in spherical harmonics allonds also
to be written as an expansion in spherical harmonics
[6].

The coefficientd™"Pin (13) will be determined by
applying electromagnetic conditions of continuity at

S
N
Il

> (Enm+ Famd 27HY (19)
=0m=0

>

5

(Com + Dnmf 7 HY™ (20)

g
I
M2

the interfaces between regions 1, 2 and 3. As shown nmom=0
elsewhere [6], the transport coefficient which is soughiyhere
can be readily determined frob9%° using
b?joo Y= mr” P"(cosf) cosme.
€jj = 1-—, (15)
70

The functionY;", even with respect tg, has an odd
wherej = x or z. Analytic expressions fdi?%° andh2%° counterpart which is not required here due to the sym-

up to orderf %3 are quoted in the Appendix. metry of the problem. ,
Applying conditions (16) and (17) to Equations 18

and 19 at the boundary between the particle core and

.. layer,r =a, the F,, can be eliminated and, ex-
2.4. Interface conditions y ! nm 2

; . _pressed
At the interfaces between the core, layer and intersti-
tial domains, the electromagnetic field obeys standard o n
conditions of continuity [12]. Continuity of the tangen- @, = Z Enm(1+ agntigle —2n- hyM (21)
tial component ofE leads to the requirement that the n=0 m=0
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with

12 p12—1

S T pu+(s+1)s 22)

andpi; =€ /€j. Now eliminating theDnm, by applying
the continuity conditions at the particle surface; ap,
gives

o
qagzz
n=0m

n

Com(1+a3"T1L%Br —21 =)y (23)
0

with
23 p230s — 1
- , 24
®  p230s + (s+1)/s 24)
and
_ 25+1,12
R (CEVVE TGV i

1+ L3(a/ag)>+t

The primeindicates the derivative normal to the surface,
ie.
dLg(€)

dg E=¢&i

Li&) =

with L eitherP or Q.

The above equations are in a form appropriate for
prolate spheroids. The correct expressions for oblate
spheroids are obtained directly from these equations
by formally replacing andi& andd with —id.

Growing and decaying terms in (23) and (26) are
now matched with terms in the multipole expansion
and the resulting systems of linear equations solved
to give theb™"P in each case. With (26) there is an
intermediate step in which the spheroidal harmonics
are transformed to spherical harmonics [6, 8]. The bulk
permittivity can then be calculated simply from (15),
using results quoted in the Appendix.

3. Example calculations and discussion

In the case of spheroidal particles, a procedure similath Fig. 3, the calculated complex permittivity is shown
to that outlined above is followed but now in terms of as a function of frequency for spherical particles with

spheroidal harmonics with co-ordinate system

x = d&7 cosep
y = dénsing
z=dén

with

E2=¢£2—1andi®=1-»

The interfocal distance of the spheroid i@ &nd sur-
faces of constardt define concentric spheroids. Apply-
ing interface conditions to the general harmonic expan

sion solutions of (9) gives

D3= )Y Com[PI(E) + LEQNE)]VT

28 (p23 — DPLE) PL(EL) + LY p23PL(E2) QL(E2) — PL(&2) QL(&2)]

layers of different thickness. The valtgiven on the
figure is the ratio of the layer thickness to the particle
radius. The intrinsic material parameters used in the
calculation are

eg=e5=1

€, =10

o1 =03 =0.00S/m
o2 =0.01S/m

and the volume fractiorf = 0.4. These parameters are
chosen to facilitate comparison with results published
independently [13], for the case= 1.0 (homogeneous
particle). The curves in Fig. 3a and b fioe 1.0 agree
with the curve for the simple-cubic lattice of spheres
given in Fig. 7a of [13]. As the layer thickness is
reduced, the relaxation frequency falls; marked by the
positions of the inflexion points in Fig. 3a and the
positions of the maxima in Fig. 3b. This behavior is
evidence of the interfacial, or Maxwell-Wagner, polar-
ization mechanism. At frequencies above the relaxation
frequency, the limiting value of the real permittivity,
lim,_ »(€") = €, also falls as the layer thickness is re-
duced. This feature can be explained by noting that the
polarization of each particle is mathematically equiv-

ST 0aaPl(E) QL&) — PLE)QLE) + LE(023 — 1)QL(E:) QL&)

(26)
n=0 m=0
where
Vn' = P'(n) cosme,

and

where

£12 _ P12 — 1
st p12] QL(€1) / PL(&1)] — [QL(E2) / PLE) ]

(28)
5812

(27)

alent to the effect of a certain distribution of volume
and surface charge. As the layer thickness is reduced,
the contribution from the volume charge distribution
declines, since the particle core in this example is elec-
trically inert, ande,, declines. In Fig. 3b it can be seen
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Figure 3 (a) Real and (b) imaginary parts of bulk permittivity for com-
posite material with spherical filler particlet = 0.4. like particles with aspect ratio 0.2 approach each other
more closely aff = 0.1 than the other particles consid-
that the peak value af” increases as the layer thick- eredinFig.5, leadingtolarge inter-particle capacitance.
nessis reduced, tending to a limiting valée€ €,,)/2  Note that there is a gradual reduction in the relaxation
with es = lim,_ o(¢’). This shows that the system can frequency ag increases, due to these shape effects.
be described in terms of a Debye theory of relaxation In Fig. 6, comparison is made with results of an
[14]. equivalent-inclusion model for the bulk thermal con-
The curvesin Fig. 4a and b show the effect of varyingductivity of a composite with randomly-distributed
t at fixed frequency. Choosing the relaxation frequencyparticles [5]. The essence of the equivalent-inclusion
for t =1.0 of Fig. 3,» =118 MHz, the layer thick- method is that a layered particle, with different coeffi-
ness ranges from zero to full thickness. Cleaflyn-  cients of thermal conductivity in the core and layer, is
creases monotonically as the layer thickness increasegplaced by a homogeneous particle and a volume dis-
whereas” peaks at ~0.17. This kind of observation tribution of dipoles such that the equivalent inclusion
may be useful in optimizing layer thickness to achieveinduces the same temperature gradient as the coated
maximum electromagnetic absorption at a particulaparticle. This assumption leads to the restriction that the
frequency. results are valid forf up to approximately 0.4. Mean-
The way in whiche is affected by particle shape is ingful comparison with the simple-cubic lattice model
shown in Fig. 5. The material parameter values are ais possible since the difference in microstructure only
for Fig. 3 witht=1.0, but here the volume fraction becomes evident fof greater than about 0.3. Calcula-
is 0.1. Curves are shown for spheres, oblate spheroidson of thermal conductivity is equivalent to calculation
with aspect ratio 0.2 and prolate spheroids with aspeadf electrical conductivityg, or static permittivitye. It
ratio 2.0. The curves for spherical particles are similar tds thus possible to make predictions of thermal conduc-
those fort = 1.0 in Fig. 3, with the same relaxation fre- tivity using the model presented above. The intrinsic
guency, but the magnitude efande” is reduced dueto material parameters are as for Fig. 7 in [5], represent-
the lower volume fraction. For the spheroids, results aréng a material composed of spherical diamond filler
plotted for the electric field applied both perpendicularparticles of average radius 2m dispersed in a ZnS
(Ex) and parallel E;) to the axis of rotation. The oblate, matrix. The interfacial thermal resistance between the
disc-like particles demonstrate the strongest anisotropynatrix and filler, 6x 10-8 m?K/W, was determined ex-
with large values of real and imaginary permittivity for perimentally. Assuming an interfacial layer thickness
x-directed applied electric field. This is because disc-of 1 nm on the semi-minor axis of the spheroid (i.e.
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Figure 5 (a) Real and (b) imaginary parts of bulk permittivity for com- (b)
posite material with filler particles having aspect ratios 0.2, 1.0 and 2.0,
and volume fractionf = 0.1. Figure 6 Bulk thermal conductivity for composite material with coated
filler particles: (a) spherical and (b) spheroidal with aspect ratios 0.5

. . and 2.0.
b, — by=1 nm, see Fig. 1), the following values of

thermal conductivity were used in the calculation: achievable volume fraction on a simple-cubic lattice,

K, = 600 WnT 1K1 fmaxiS 7w /24 and for oblate spheroids with aspect ratio
0.5, fmax=m/12 [8]. Results forf up to these val-

Kz =0.0167 WnT 'K ™! ues are shown in Fig. 6b, although the curve for pro-

Ks=17.4 Wm K1, late spheroids with ax-directed temperature gradi-

ent cannot be distinguished from that for the oblate
In Fig. 6a, bulk thermal conductivity is presented spheroids with the-directed temperature gradient, so
as a function of volume fraction for the experimen-is not shown explicitly. The results from the equiva-
tal parameter values given above, and for a highlydent inclusion model [5] are for spheroids with arbi-
conductive interfacial layer K, =10 Wm~'K~! trary distribution in space and orientation. It can be
in this calculation) and a strongly-resistive layer, seen that the predictions from the equivalent-inclusion
K,=0.0 Wm 1K~1. The results obtained here are in model are bounded by those of the simple-cubic lat-
close agreement with those of [5], from which the val-tice model in the case of prolate spheroids, but not
ues atf =0.4 are also shown in Fig. 6a. The slight for the oblate spheroids. Reduction of the bulk ther-
deviation of the curve for the conductive layer from mal conductivity below that of the matrix, as pre-
the result of [5] atf =0.4 is due to the difference in dicted in [5] for oblate spheroidal filler particles, is
the microstructure for the two models. In Fig. 6b, cal-explained in terms of the important role of the particle
culated values of bulk thermal conductivity are shownsize when thermal boundary resistances are present.
for spheroidal particles with aspect ratios 0.5 and 2.0rhe simple-cubic lattice calculation is carried out in
and temperature gradient applied either perpendicuterms of theratio of the particle dimension to that
lar (Fx) or parallel {,) to the axis of rotation. For of the unit cell and so does not cater for such size
prolate spheroids with aspect ratio 2.0, the maximuneffects.
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4. Conclusion Spheroids
An analytical method has been developed to calculat€or a system of prolate spheroidal particles as shown
the complex dielectric constant of composite materi-in Fig. 1, applying an electric field parallel toyields

als with coated speroidal filler particles arranged on g6]

simple-cubic lattice. Example calculations show good

agreement with independent calculations and indicate 0 5 1
features which may be exploited practically, for ex-bey = 4rd{s1(L1) ~ +
ample optimization of the layer thickness to maximise

dissipation of electromagnetic energy at a particular fre- + 2alssh + C (2485015 + 12084517)
guency. Calculations of bulk thermal conductivity also

show good agreement with independent work.

47d3

435>
3‘[0 * 2082

-1

Appendix: First multipole expansion
coefficient

For spheroidal particles arranged on a simple-cubic lat- .
tice, the second-order tensor describing the bulk com‘—NIth
plex permittivity can be expressed as in (7). The inde- 11 / 5 / 7
pendent components of the tensor can be obtained by C = _Ss(£3) 4alzos7k + 2350%*

solving two scalar problems in which the electric field 6[89(E%)_ + 20a§,037?»7]

is applied parallel to eithex or z, and the particles

replaced by singular, multipole sources. The first coefand

ficient in the multipole expansiob?®with j = x or z, ) 1.7
is required to calculate;; via (15). In this Appendix, X = Si0+ 6Csi1 +20850512L51 . (A4)
analytical expressions fdi™° accurate to ordef 1#/°
are quoted.

(A2)

(A3)

In the above equationsg2s the interfocal length of the
spheroids and =d/I. The constants;, j =1,...,12
arise in transforming from spherical to spheroidal har-
Spheres monics. This operation is required in order to match
In the case of spherical particlels??°=b2% due to  the multipole solution expressed in terms of spherical
symmetry. Ify =rq/I with rq the particle radius and  harmonics, discussed in Section 2.3, with the intersti-
the side length of the unit cell, the solution accurate tatial domain solution expressed in terms of spheroidal
y'is[2] harmonics. The details of the transformation and de-

termination of the relevant matrix elements are given
Arrd 16(a50)%y 10 elswhere [6, 8]. The numerical values of t)eare

30 L3+ 20857

%% = 471 [ﬁgl -
s =-1500 s;=0.1333

s =-1800 s=1111

S =-9643 s=-4375

sS4 = 3.500 S10 = 0.02550

ss =1.333 s11 = 0.5339

Ss = —0.5838 51, = 0.007037

-1
— 176C5(ag)°y M + O(Vlg)i| . (A1)

The coefficients
a0 = 3.108227 azg = 0.5733293

arise in summing over the infinite number of lattice sites

[11, table 13]. In the above equatica,,,=1?"*'a,m  The functionL! in (A2) is obtained by applying con-
andthe functiorCs in (A1) is obtained by applying con-  tinuity conditions at the interfaces between the particle
tinuity conditions at the interfaces between the particlecore and layer domains and the interstitial domain. The
core and layer domains and the interstitial domain. Thelerivation and definition is given in Section 2.4
derivation and definition is given in Section 2.4, Equa- If the electric field is applied parallel i the result
tion 24, although the superscript 23 is dropped here. is [6]

000 3 o-1, 4m d? / 5 / 7
0
[4a5Ts(£3) 25 + 28417 (£2) 47 + 16(@h0)2T's1 10 + 8ap o l'9r 2 + 12(840) 2104 ]
[T11(£9) ™ + 2084'6.7]
-1
— (aho)? [36I4L2 + 1400 LE] A2 + O(WF) ¢ . (A5)
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Similarly to thes; in (A2), the constantd’j, j = 3. R. C. MCPHEDRANandD. R. MCKENZIE, Proc. Roy. Soc.
1,...,11in (A5) arise in transforming from spherical Lond A 359(1978) 45.

to spheroidal harmonics. The numerical values are 4.1.J. YOUNGS, in Proceedings of BEMC 99, the 9th International
) Conference on Electromagnetic Measurement, Brighton, November

1999, p. 53 and submitted tBE Proc. Sci. Meas. Technol

'y =3.000 'y =-9756 5.M. L. DUNN and M. TAYA, J. Appl. Phys.73 (1993)
N N 1711

[2=06000 TI's=04 6. N. HARFIELD, J. Phys. D: Appl. Phys32 (1999) 1104.

I's =0.1947 I'g = 5.056 7.A. S. SANGANI andC. YAO, J. Appl. Phys 63 (1988)
1334.

I'4 =0.001466 T10=4.137 8. N. HARFIELD, Eur. Phys. J. AR (1999) 13.

s =0.03694 I3 =175 9.J. C. MAXWELL, “A Treatise on Electricity and Magnetism”
(Clarendon, Oxford, 1881).

I'e = —10.48 10. H.HASIMOTO, J. Fluid Mech 5 (1959) 317.

11. A. S. SANGANI, PhD Thesis, Stanford University, 1983.

Equations (A2) and (A5) are in a form which is appro- > e m’j\'(orskTT&TJON' Electromagnetic Theory” (McGraw-Hil,

priate for prolate spheroids. The correctform for oblate;s . peLsTER and U. sIMON, Colloid Polym. Sci 277

spheroids is obtained directly from these equations on (1999 2.

replacingd with —id. 14. A. R. VON HIPPEL, “Dielectrics and Waves” (John Wiley, New
York, 1954).
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