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ABSTRACT 
Microwave-absorbing materials find application in telecommunications, microwave 

heating and for representing the behavior of biological tissue in the presence of 
microwave radiation. Commonly, such materials are formed using ferromagnetic filler 
particles and rely on the phenomenon of ferromagnetic resonance for absorption of 
microwaves. Dielectric loss at microwave frequencies can be engineered through 
creating a phase lag, with respect to the applied electric field, of the movement of free 
charges in a composite formed using metal-coated filler particles.  These materials can 
be engineered to be less dense and, therefore, more lightweight than those formed with 
ferromagnetic fillers, which is an advantage in some applications.  Furthermore, theory 
shows that the frequency of maximum absorption can be tailored by selecting the 
conductivity and thickness of the particle coating although, in practice, it may be 
difficult to fabricate particles with tightly controlled physical parameters.  In this 
work, theories for calculating complex permittivity of composites with layered filler 
particles are reviewed, and experimental observations of dielectric relaxation in 
composites formed by dispersing tungsten-coated glass bubbles in paraffin wax are 
shown. 

   Index Terms  — Composite material, Dielectric relaxation, Microwaves, Dielectric 
loss, Multi-layered filler particles 

 
1   INTRODUCTION 

 MATERIALS which exhibit dielectric relaxation at microwave 
frequencies are potentially useful as absorbers for reducing cross-
talk and interference in telecommunications [1, 2], for improving 
heat transfer in the packaging of microwave foods [3], and as 
phantoms mimicking the behavior of human tissue exposed to 
microwave radiation, e.g. [4, 5].  Absorption of microwave 
radiation is commonly achieved using composite materials 
consisting of ferromagnetic filler particles (e.g. iron, cobalt or 
nickel) dispersed in a suitable matrix [6, 7].  The absorption 
mechanism in this case relies on the phenomenon of 
ferromagnetic resonance in the filler particles [8].  These 
composites have proved reliable but are typically dense and 
consequently heavy.  Many applications would benefit from 
lightweight materials for absorption of microwave radiation, 
achievable by relying on dielectric, rather than magnetic, loss as 
the primary absorption mechanism. 

Dielectric relaxation, observed in measurements of relative 
permittivity of a composite material consisting of homogeneous, 
conductive filler particles dispersed in an essentially non-
conductive matrix, is associated with entrapment of free charges 

at the interfaces between the constituent phases.  The resulting 
interfacial polarization increases the low-frequency permittivity 
of the composite, compared with the permittivity of the unfilled 
matrix material.  At low frequencies, the movement of free 
charge follows the cycle of the applied electric field with little or 
no phase lag.  As the frequency is increased, a characteristic 
relaxation frequency, υrel, is reached at which the induced 
polarization is π/4 out of phase with the applied field.  This is the 
frequency at which absorption loss is maximum.  As the 
frequency increases still further, the phase lag between the 
applied electric field and the induced polarization continues to 
grow until, in the high-frequency regime, the conductive phase 
behaves as a lossless dielectric and interfacial polarization does 
not occur.  For recent reviews of electrical properties and 
modelling of dielectric mixtures see references [9] and [10]. 
Dielectric relaxation due to interfacial polarization can be tuned 
to a specific frequency by selecting the conductivity of the filler 
particles.  For example, calculations of the optical extinction 
coefficient for spherical copper particles dispersed in 
fluorozirconate glass [11] indicate that dielectric relaxation of the 
composite occurs at approximately 4.6 ×  1014 Hz.  Similar 
behavior is obtained with other metal fillers.  Modelling predicts 
that, in order to achieve dielectric relaxation at microwave 
frequencies, due to an interfacial polarization process Manuscript received on 27 August 2005, in final form 29 November 2005. 
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Figure 1. Real and imaginary parts of bulk permittivity for a composite 
material containing homogeneous, conductive, spherical filler particles. σfiller = 
1, 10 and 100 S/m. ε 'filler = ε 'matrix= 1. The filler volume fraction, f, is 0.3. 
 
in a composite containing homogeneous filler particles, the  
particles should have conductivity in the approximate range 1 
to 100 S/m.  This is illustrated in Figure 1, in which the bulk 
relative permittivity of a composite is calculated for spherical 
filler particles with conductivities 1, 10 and 100 S/m. From 
the Maxwell-Ampère law applied to a time-harmonic 
excitation, with time-dependence tie ω− , and the constitutive 
relation connecting the electric flux density and the electric 
field, a complex relative permittivity may be defined 

εεε ′′+′= i  with 
0ωε

σε =′′  (1) 

In equation (1), σ is the conductivity of the medium, ε0 = 8.85 
×  10-12 F/m is the permittivity of free space and ω = 2πυ is the 
angular frequency.  This means that, in the frequency range 
108 to 1013 Hz shown in Figure 1, the conductive filler 
behaves as a good conductor at the low end of this frequency 
range and as a poor conductor, or insulator, at the high end of 
this frequency range.  This behavior may be explained in 
terms of the loss angle of the filler material, defined 
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which varies from approximately π/2, for 
( ) fillerfiller εωεσ ′>>0/  at the low end of this frequency 

range, to approximately zero, for ( ) fillerfiller εωεσ ′<<0/  at 

high frequency.  The curves shown in Figure 1 are calculated 
with a model in which the particles are represented by 
multipole sources located at their centers [12], although for 
this system, in which the volume fraction f = 0.3, ε’filler = 1 
and ε’matrix = 1, essentially identical results are obtained with 
effective medium formulas, e.g. [13].  Figure 1 shows that as 
the conductivity of the particles is increased by a factor of ten, 
say, so the frequency of relaxation increases by the same 
factor.  In fact, the frequency at which relaxation occurs is 
proportional to the particle conductivity; υrel ∝  σ [14].  

Materials with conductivity in the range 1 to 100 S/m are 
not readily available as fillers for composite materials, 
although dielectric relaxation in the frequency range 8.2 to 
12.4 GHz has been observed in composites with nano Si/C/N 
and nano SiC filler particles [15], and at around 1 GHz with 
ferroelectric polycrystalline ceramic fillers [16].  An 
alternative means of creating dielectric relaxation in the 
microwave frequency range is to employ non-conductive filler 
particles that are coated with a thin conductive layer.  The 
relaxation frequency observed in these kinds of composites is 
now governed by the thickness, as well as the conductivity, of 
the conductive shell.  Indeed, for very thin metal films the 
conductivity and film thickness are related [17, 18].  Dielectric 
relaxation in these kinds of composites has been observed 
experimentally in the microwave [19] and optical/infrared [20-
22] regions of the frequency spectrum.  Practically, the 
conductive coating on the substrate particles may be 
discontinuous.  In this case, the frequency at which relaxation 
occurs also depends on the area fraction and percolation 
threshold of the coating [23, 24]. 

In this article, dielectric relaxation in a composite due to 
polarization at the interfaces of layered filler particles –
essentially conductive shells – is explored both theoretically 
and with reference to experimental measurements.  For 
brevity, this article focuses on isotropic materials in which the 
filler particles are multi-layered spheres.  For work describing 
materials with other types of inhomogeneous filler particles, 
see for example references [13] (spherical inclusions with 
radially linear, parabolic and Gaussian permittivity profiles) 
and [25] (cylindrical inclusions with radially exponential, 
linear and power-law permittivity profiles).  Composite 
materials exhibiting anisotropic dielectric behavior can be 
created by embedding partially- or fully-aligned non-spherical 
multi-layered particles in a matrix.  See for example 
references [12] and [26-31]. 
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2  MODELLING DIELECTRIC RELAXATION 
IN COMPOSITES WITH MULTI-LAYERED 

FILLER PARTICLES 
2.1 REVIEW 

A single or dual dielectric loss process can arise in a 
composite consisting of coated filler particles dispersed in a 
matrix, depending on the dielectric and geometric properties 
of the particle core and layer.  This effect has been 
investigated theoretically by means of both dipole [32] and 
multipole [12, 26] representations of the electric potential in a 
composite system in which the filler particles are coated 
spheres and, in the case of multipoles, spheroids.  At optical 
and infrared frequencies, the phenomenon has been modelled 
using the Maxwell-Garnett effective medium relation [11], 
Mie scattering theory [11, 20] and a time-dependent density 
functional method [33]. 

Tinga et al [27] give a closed form solution to the problem 
of multiphase inclusions in the form of confocal ellipsoidal 
shells dispersed in a host material. First-order inclusion 
interactions are implicitly contained in the solution by choice 
of the boundary conditions.  A self-consistent solution for the 
dielectric constant of the mixture is then obtained without 
explicitly solving for the electric field values.  The work is 
motivated by the desire to model the dielectric constant of 
wood (a mixture of cellulose, air and water) for the purpose of 
determining water content. In the theoretical approach, an 
extra boundary between the inclusions is specified which 
allows interaction effects to be accounted for.  This boundary 
encloses a representative volume, which is the total volume 
divided by the number of inclusions, and it is assumed that a 
single particle lies centrally in the volume. The geometry of 
the volume - here an ellipsoid confocal with the inclusion – is 
chosen for mathematical convenience. Within the 
representative volume, but exterior to the particle, the 
permittivity takes the value of the matrix material. Outside the 
representative volume, the permittivity is assigned the 
effective value of the composite. According to Landauer's 
review article [34] this approach, like Lorentz's treatment of 
spherical particles embedded in a matrix, suffers from the 
assumption that the particles acting on the representative 
particle behave as point dipoles. If the particles occupy a 
region of space sufficiently small that this assumption is 
reasonable, then the very interaction which is being assessed 
becomes negligible. In addition, for shapes other than spheres, 
the point dipole approximation can be very poor due to 
possibly rapid local fluctuations in the electric potential in the 
neighborhood of the particles. These rapid fluctuations cannot 
be adequately described by a dipole approach.  Another 
difficulty is that for any appreciable volume fraction of 
particles the shell boundary cuts right through some of them. 

Sihvola and Lindell [13] obtain the polarizability and dipole 
moment of different types of small, inhomogeneous inclusions 
and, from the dipole moment, solve for the effective 
permittivity of a dielectric mixture that contains these 

inclusions. Results for multi-layered and inhomogeneous 
inclusions with linear, parabolic and Gaussian permittivity 
profiles are presented. The spatial correlation distance of the 
material is restricted to be much smaller than the wavelength 
of the applied field. This quasistatic restriction means that 
scattering losses are not included in the effective permittivity 
calculation, but absorption losses are taken into account. 

The complex dielectric constant of a composite with an 
interlayer separating the matrix and particle phases was 
studied by Steeman and Maurer [35] as a function of the 
volume fractions and the properties of the filler, interlayer and 
matrix. An analytical expression describing the influence of 
an interlayer on the dielectric constant of the composite as a 
function of the volume fraction and interlayer properties is 
described.  The theoretical approach is similar to that of Tinga 
et al [27].  The work is motivated by the practical concern of 
the adverse effect, on the properties of some composites, of 
adsorbed water at the interface between filler and matrix.  The 
presence of water can be detected very sensitively using 
dielectric measurement techniques. The authors of reference 
[35] mention work of Pauly and Schwan [36] and Hanai [32] 
in which analytical expressions for the dielectric behavior of 
suspensions of spherical particles with a surface layer are 
given. In references [36] and [32] it is shown that, for 
constituents with frequency-independent material properties, 
in general two relaxation processes exist. 

More recently, the models of Tinga et al [27] and Sihvola 
and Lindell [13] have been employed by Friedman [37] to 
improve understanding of the relation between the effective 
dielectric constant of soils and their water content. 

A topic of increasing interest is the effect of the interface 
region between two, say, components of a composite system.  
Chemically, this region is likely to exhibit dielectric properties 
which differ from those of the bulk matrix material, perhaps 
due to alignment of polymer chains near the surface of a filler 
particle, or other chemical processes.  Especially for 
composites with small (nanoscale) filler particles, the presence 
of these ‘interphase’ regions may have a significant, or even 
dominant, effect on the dielectric properties of the bulk 
material [38, 39].  Power-law relationships for modelling 
dielectric properties of two-phase composite systems have 
been extended by Todd and Shi to take into account 
interactions between the components in the form of interphase 
regions [40].  If overlap between the interphase regions 
surrounding each filler particle is not permitted, this 
formulation provides a mathematical description of the 
dielectric behavior of a composite with coated filler particles. 

Calculations of the optical extinction coefficient for 
spherical, copper-coated dielectric particles in fluorozirconate 
glass are presented by Edgar [11].  Two methods of 
calculation are compared; one based on a modern discussion 
of the general theory of light scattering from a particle 
embedded in a homogeneous material [41] and the other based 
on the Maxwell-Garnett theory.  The comparison indicates 
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that effective medium theory is useful for composites whose 
filler particles are small compared to the interrogating 
wavelength, although it is of decreasing accuracy as the size 
of the particle increases relative to the wavelength. This is to 
be expected since light incident on a slab of glass containing 
particles whose dimensions are of the order of a wavelength, 
or greater, will be attenuated by the combined effects of 
scattering and absorption, whereas the Maxwell-Garnett 
theory accounts only for absorption. Edgar's study is 
motivated by evidence for copper occurring as a coating on 
dielectric crystallite impurities in fluorozirconate glass - a 
substance used to make optical fibers. 

Optical absorption spectra for metal nanoshells have been 
calculated by Halas et al using two methods.  A generalized 
Mie scattering approach, in which line-broadening 
mechanisms are included, is adopted in references [20, 42, 
43].  Classical Mie scattering theory requires, as an input, the 
frequency-dependent dielectric function of the filler particles.  
To overcome the need for this function, which is often known 
for bulk materials but cannot be used with confidence for 
nanoscale particles, a time-dependent density functional 
method for calculation of the optical properties of metal 
nanoshells is adopted in reference [33].  

2.2 MULTIPOLE AND DIPOLE THEORIES 
Three theoretical descriptions of the bulk permittivity of a 

composite material, representing different levels of 
approximation, are summarized in the following paragraphs.  
First, the multipole theory of reference [12], accurate to order 
(f)14/3, is given.  Then it is shown how this result reduces to 
that obtained by Sihvola and Lindell [13] if the particle 
volume fraction is sufficiently low that the local field at a 
representative particle is perturbed only slightly by the 
presence of its neighbors.  In this case the particles may be 
modelled as interacting dipole sources.  If the filler particles 
are well-separated, it may be assumed that the perturbation of 
the local field at a representative particle, due to its neighbors, 
is negligible.  Then the particles may be treated 
mathematically as non-interacting dipole sources and the 
result is simplified still further [44].  In all three approaches it 
is assumed that the particles are significantly smaller than the 
wavelength of the electromagnetic radiation and that 
scattering losses are negligible.  The electric scalar potential is 
then Laplacian and the mathematical treatment is as for a 
static system.  It is also assumed that the electromagnetic skin 
depth in the conductive phase (defined as δ = [2/(ωμσ)]1/2 with 
μ being the magnetic permeability of the conductor) is 
significantly larger than the thickness of the conductive phase. 
Further, the intrinsic material parameters ε’ and σ are assumed 
constant over the frequency range considered. 

Consider a collection of identical, coated, spherical filler 
particles arranged on a simple-cubic lattice whose lattice 
vectors coincide with the axes of a Cartesian co-ordinate 
system, as shown in Figure 2. Symmetry dictates that, when 
an electric field is applied in the direction of any of the three 

co-ordinate axes, the same value of bulk permittivity, ε, is 
observed.  An expression for ε may be obtained by treating the 
particles as multipole sources located at their centers, resulting 
in the following series solution [12]. 

 
Figure 2. Cross-section of a coated sphere. Region 1 denotes the particle 
core, 2 the coating and 3 the interstitial matrix.  a1 is the core radius and a2 the 
radius of the entire (coated) particle. 
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In equation (3), f is the particle volume fraction, ε3 is the 
relative permittivity of the matrix and 23

1L is a coefficient 
arising from the application of continuity conditions on the 
electric potential at the interface between the layer at the 
surface of the particle and the matrix, regions 2 and 3. This 
and the ci are functions of the dielectric properties and volume 
fractions of the individual phases, and are detailed in the 
Appendix.  If any of the individual phases are lossy, with 
complex εi, then ε will also be complex.  Equation (3) is an 
extension of the result of reference [45] for homogeneous 
spherical filler particles, to spherical filler particles with a 
surface layer. 

The series in equation (3) has been truncated to allow 
analytical calculation of the coefficients [12]. Coefficients of 
higher-order terms could be calculated numerically if desired.  
Despite being truncated, equation (3) is more accurate than 
alternative approaches discussed in section 2.1 for calculating 
the effective permittivity of a composite with spherical 
particles arranged on a simple-cubic lattice. 

If the particle volume fraction is sufficiently low that the 
local field at a representative particle is perturbed only slightly 
by the presence of its neighbors, the particles may be 
modelled as interacting dipole sources.  Then the first two 
terms in square brackets of equation (3) are obtained.  
Expanding 23

1L  then gives the following expression for ε: 
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The fi are volume fractions of the individual phases, i = 1,2,3. 
The volume fraction of the coated particle is f = f1 + f2. The εi 
are relative permittivity values. The result shown in equation 
(4) is identical to that obtained by Sihvola and Lindell [13] for 
a mixture of coated spheres dispersed in a matrix in which the 
only restriction on microstructure is related to the assumption 
that the particles behave as interacting dipole sources. 

If the filler particles are well-separated, it may be assumed 
that the perturbation of the local field at a representative 
particle, due to its neighbors, is negligible.  Then the particles 
may be treated mathematically as non-interacting dipole 
sources and only the first term in square brackets of equation 
(3) is obtained.  An equivalent result is obtained in reference 
[44] for homogeneous filler particles.  This leads to the loss of 
the last two terms in the denominator of the term on the right-
hand side of equation (4), which then reduces to 
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Equation (5) is generally considered accurate for volume 
fraction no greater than 0.3 [44].  For larger volume fractions, 
the effect of composite microstructure is significant and needs 
to be taken into account as, for example, in the development 
of equation (3). 

2.3 EXAMPLES 
For composites whose filler particles have continuous 

conductive coatings, modelling reveals that the frequency at 
which interfacial-polarization relaxation occurs depends on 
both the conductivity of the coating and its thickness relative 
to the particle radius.  Referring to Figure 2 the following ratio 
is defined: 

2

12

a
aat −

= . (6) 

In Figure 3, the bulk relative permittivity of a composite is 
shown for spherical filler particles with values of t ranging 
from 1 (homogeneous particle) to 0.001, for filler volume 
fraction f = 0.3. The permittivity value of the matrix material 
is assumed equal to that of free space, ε0.  The relative 
permittivity of the particle core is εcore = 10, and the complex 
relative permittivity of the particle shell is εshell = 1 + 
i100/(ωε0), such that the particle shell has the same properties 

 
Figure 3. Real and imaginary parts of bulk permittivity for a composite 
material containing spherical filler particles, as a function of frequency and 
ratio of shell thickness to particle radius, t.  εcore  = 10, εshell = 1 + i100/(ωε0) 
and εmatrix = 1. f = 0.3. 
 
as the homogeneous filler particles with σ = 100 S/m, whose 
dielectric response is shown in Figure 1.  The curves are 
calculated according to the multipole theory of equation (3). It 
can be seen that, as the layer thickness is reduced, the high-
frequency limiting value of the real permittivity increases.  
This is due to the increasing volume fraction of the particle 
core, as t decreases. Two relaxation peaks can be 
distinguished in cases where the filler particles are 
inhomogeneous. This is a consequence of the fact that the real 
part of εcore is greater than that of εshell [26].  This kind of fine 
structure may only be observed experimentally in the case of a 
well-controlled system of particles in which t is tightly 
specified.  In practice, variations in coating thickness, 
uniformity and, to a lesser extent, particle size cause 
broadening of the relaxation [19, 42].  Nonetheless, the results 
of Figure 3 show that the frequency of dielectric relaxation 
observed in a composite material can be reduced by using 
conductive-shell filler particles rather than homogeneous 
conductive particles.  This deduction is in agreement with that 
made in modelling optical responses of composites with 
metal-shell filler particles, even when scattering losses are 
taken into account [11, 20-22]. 
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Figure 4. Real and imaginary parts of bulk permittivity for a composite 
material containing spherical filler particles, as a function of frequency and 
dielectric constant of the particle core, εcore.  εshell = 1 + i100/(ωε0) and εmatrix = 
1. f = 0.3. 
 

Changing the conductivity of the coating gives rise to 
similar behavior as for the composite with solid filler 
particles, shown in Figure 1.  That is, υrel ∝  σshell.  Very thin 
metal coatings exhibit conductivity which is significantly 
reduced compared with the value for the bulk metal [17, 18], 
giving rise to the possibility that metal-coated particles 
embedded in a host medium will produce dielectric relaxation 
at microwave frequencies. 

In Figures 4 and 5, the effect of changing the dielectric 
constant of the particle core and the matrix, respectively, on 
the bulk permittivity of the composite is shown.  The particle 
coating has the same dielectric constant as that in Figure 3, 
and t = 0.1.  From Figure 4 it is seen that increasing the value 
of εcore has the effect of increasing the high-frequency 
asymptotic value of ε’, whereas the low-frequency value is not 
affected by changes in εcore for the system considered here.  
This is due to shielding of the core by the conductive layer in 
the low-frequency regime, where the loss angle θshell ≈ π/2.  In 
the high-frequency regime, the shell behaves as a dielectric 
and no longer shields the particle core from the electric field, 

so that the effect of changing εcore becomes visible.  The 
relaxation broadens with the emergence of a distinct second 
relaxation frequency as εcore takes larger values. In Figure 5 it 
is shown that increasing εmatrix has the effect of accentuating 
existing behavior; the shape of the frequency response 
observed in the case of εmatrix = 1 is essentially repeated as 
εmatrix increases, but with significantly increased values of ε’ 
and ε’’ due to increasing inter-particle capacitance.  There is 
also a reduction in the lower relaxation frequency as εmatrix 
increases, but no obvious change in the higher relaxation 
frequency.  These observations are in qualitative agreement 
with findings of modelling studies on the optical properties of 
metallic nanoshells [33, 43]. 

 Figure 5. Real and imaginary parts of bulk permittivity for a composite 
material containing spherical filler particles, as a function of frequency and 
dielectric constant of the host medium, εmatrix.  εshell = 1 + i100/(ωε0) and εcore = 
10. f = 0.3.  
 
 The broader indication of results presented in this section is 
that dielectric relaxation due to interfacial polarization can be 
designed at arbitrary frequency, by suitable choice of 
materials. 
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Figure 6. Relative permittivity of composite samples formed from tungsten-
coated microbubbles in paraffin wax, for various values of filler volume 
fraction [19].  Mean filler particle radius is 15 μm and nominal tungsten 
thickness is 20 nm. 

3  EXPERIMENTS 
In practice, dielectric relaxation in the microwave 

frequency range has been observed for spherical filler 
particles with thin, discontinuous metal coatings [19, 46, 47].  
Metal coatings a few nanometers thick exhibit significantly 
reduced conductivity compared to that for the bulk material, 
due to such factors as reduction of the electron mean-free-path 
and surface roughness of the coating [18].  Discontinuities in 
the coating also strongly reduce the effective coating 
conductivity [48].  In Figures 6 and 7, experimental 
measurements of bulk permittivity on composites formed from 
tungsten-coated glass microbubbles embedded in paraffin wax 
are shown [46, 47]. 

Results shown in Figure 6 are for filler particles with mean 
radius approximately 15 μm and nominal tungsten coating 
thickness 20 nm.  Those shown in Figure 7 are for filler 
particles with mean radius approximately 30 μm and nominal 
tungsten coating thickness 3 nm.  In both cases, a thin (≈  3 
nm) outer coating of alumina on each particle acts to prevent 
percolative electrical conduction in the composite at higher 
filler volume fractions.  In the frequency range under study, 

 
Figure 7. As for Figure 6 but for filler particles with mean radius 30 μm and 
nominal tungsten coating thickness 3 nm [47]. 

 
the alumina is otherwise passive in contributing to the bulk 
dielectric constant of the composite, as shown in reference 
[19] where the dielectric behavior of the composite was 
successfully modelled even when the alumina coating was 
ignored in the calculation.  Measurements from 1 to 18 GHz 
were made using a 7 mm coaxial line transmission/reflection 
method. For results shown in Figure 6, higher frequency 
measurements were made using two rectangular waveguides.  
Mismatches between data sets taken with the three different 
types of sample holder are visible, but the trends are clear.  
The dielectric relaxation is particularly obvious for the higher-
volume-fraction specimens in Figure 6 since, for these, υrel lies 
well within the range of experimental measurement (υrel ≈  10 
GHz for f = 0.51).  From Figure 7 it appears that υrel for the 
sample with f = 0.6 is approximately 17 GHz or higher, since 
the sharpness of the peak is unlikely due to relaxation but may 
be due to resonance in the sample itself or may appear as a 
consequence of the sample/test geometry.  While the mean 
values of t, equation (6), for these two systems (t ≈  10-3 and 
10-4, calculated using nominal layer thickness values, for 
fillers in Figures 6 and 7 respectively) suggest that the 
relaxation frequency should be lower for the system of Figure 
7 than for that of Figure 6, which is not the case, the 



N. Bowler:  Designing Dielectric Loss at Microwave Frequencies using Multi-Layered Filler Particles in a Composite  710 

explanation lies in the non-uniformity of the conductive 
coating.  The tungsten coating is produced by sputter 
deposition and, in the case of the nominally thicker (≈  20 
nm) coatings, has been shown to be fairly uniform but 
discontinuous by means of scanning electron microscopy [23].  
It is likely that similar discontinuities exist in the nominally 
thinner tungsten coating, which means that the parameter t is 
not properly defined for these systems and deductions based 
on its value cannot be made. The relaxations observed in 
Figures 6 and  7 are broad, and the dominant broadening 
mechanism is the distribution of coating conductivities due to 
variations in the coating uniformity, with a lesser contribution 
from polydispersity of the particles [19, 42, 49]. 

4  CONCLUSION 
Dielectric relaxation, observed in measurements of relative 

permittivity of a composite material, can be tuned to a specific 
frequency by using filler particles with a conductive coating 
or shell.  This tunable relaxation is due to entrapment of free 
charge at the interfaces in the system, leading to interfacial 
polarization.  The frequency at which the relaxation occurs 
depends strongly on the properties of the conductive shell.  
For a uniform coating on spherical particles, the critical 
parameters are the conductivity of the coating and its 
thickness relative to the particle radius. 

Experimental results shown here exhibit broad dielectric 
relaxations due to non-uniformity in the conductive coatings 
produced by sputter deposition.  Chemical methods, by which 
conductive shells have been fabricated as fillers for tailoring 
optical properties of composite materials [49, 50], offer the 
possibility of tighter control on the radius, thickness and 
uniformity of conductive shell filler particles.  Greater control 
in the fabrication of these fillers will permit their exploitation 
as more finely tuned absorbers of microwave radiation for 
various applications. 

APPENDIX  
In equation (3), the ci are given by  
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where 23
sL  is a coefficient obtained by applying continuity 

conditions on the electric potential at the surface of the filler 
particles.  This is the interface between regions 2 and 3, 
shown in Figure 2.  Explicitly, 
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and 12
sL  is a coefficient obtained by applying continuity 

conditions on the electric potential at the interface between the 
core and layer of the filler particles; regions 1 and 2 shown in 
Figure 2: 

( ) ss
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1212
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ρ
. (12) 

The coefficients nm
n

nm ala 12 +=′ , where l is the side length of 
the unit cell of the simple-cubic lattice, arise in summing over 
an infinite number of lattice sites and have numeric value [51] 
a20 = 3.108227 and a30 = 0.5733293. The volume fraction of 
the particle core is f1 whereas f = f1 + f2 is the volume fraction 
of the entire particle; core and layer together.  
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