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Abstract. A two-dimensional, time-harmonic eddy-current problem is examined in 
which a uniform field is perturbed by a long, surface-breaking crack in a 
non-magnetic, conducting half-space. The crack is assumed to be ideal in the 
sense  that it has infinitesimal opening and yet forms a perfect barrier to the 
passage of electric current. A solution is sought which is accurate both at high 
frequencies, at which the skin depth is small compared with the crack depth, and at 
intermediate frequencies, where the skin depth and crack depth are of similar 
magnitude. The Wiener-Hopf technique is used to derive a Fredholm integral 
equation of the second kind for the scattered magnetic field. An approximate 
closed form solution of this equation is found as a series of exponentially 
decreasing terms. At lowest order, local solutions at the buried crack edge and at 
the corners where the crack meets the surface of the conductor are decoupled. 
Higher order terms in the series account for the coupling which occurs between the 
fields perturbed by the crack edge and corners. 

1. Introduction 

Eddy-current non-destructive evaluation plays an important 
role in ensuring that metal components are free from 
defects. Typically, a component under inspection is 
scanned by an eddy-current probe and a defect is 
detected by a change in impedance of the probe coil 
[I]. Although real probes and flaws require a three- 
dimensional representation, the study of two-dimensional 
problems is valuable since independent analytical results 
can be found against which numerical models can be 
validated in appropriate Iimits. In addition, such solutions 
provide physical insight into the interaction between flaws 
and induced electromagnetic fields. Closely related to the 
eddy-current method is the AC potential difference method 
[2] in which electric current can be either 'injected' into the 
conductor or  induced. In this technique the current flow is 
approximately uniform and approaches more closely the 
assumed flow in a two-dimensional problem. In addition, 
although infinitely long cracks do not occur in practice, 
long machined slots are commonly used in experimental 
situations and study of the two-dimensional configuration 
enhances understanding of the behaviour of such systems. 

In the high-frequency regime, the electromagnetic skin 
depth is much smaller than the depth of the crack and 
current flows uniformly over the crack faces. Only near 
the. buried edge of the crack and in the conductor corners 
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at the crack mouth do the fields depart from this uniform 
behaviour. Consequently, in the high-frequency regime, 
the solution for the fields may be found as the sum of 
distinct contributions from the comers, faces and edges 
of the crack. This constructive approach was first used 
by Kahn er al [3] and yields good results for cracks 
of depth greater than about four skin depths. Here, 
a more general solution is sought which will be valid 
over a much wider frequency range. To this end, the 
problem is re-formulated by imaging in the air-conductor 
interface plane. The Wiener-Hopf method of solution is 
then employed and yields a Fredholm integral equation 
of the second kind for the scattered magnetic field. It 
is possible to solve this equation approximately for high 
frequencies. The expressions obtained for the scattered 
magnetic field near the edge and corners of the crack 
in the high-frequency regime are precisely those deduced 
in the constructed solution of Kahn et a1 [3]. The way 
in which the constructed solution arises naturally in the 
high-frequency limit of the more general Wiener-Hopf 
solution gives confidence in the validity of the constructive 
apprdach. In addition, the Wiener-Hopf method yields 
higher order terms in the solution for the scattered magnetic 
field. These higher order terms describe coupling between 
the field perturbations at the edge and comers of the crack, 
thereby providing information which cannot be found using 
the constructive method. This information allows departure 
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from the limit in which the perturbed fields at the crack edge 
and corners are de-coupled and, consequently, the solution 
is valid for cracks which are shallower than those for which 
the edge and corner fields are completely de-coupled. 

2. The Wiener-Hopf method in non-destructive 
evaluation 

The Wiener-Hopf technique, published in 1931, was 
originally developed to solve a particular class of integral 
equation [4]. The procedure usually depends on use 
of one of the Fourier-Laplace-Mellin inversion trio in 
obtaining a complex variable equation which is solved by 
analytic continuation. In 1952 Jones published a different, 
but equivalent, approach in which transforms are applied 
directly to the partial differential equation and the complex 
variable equation found without the formulation of an 
integral equation [5]. The relative simplicity of Jones' 
method led to it  being used almost exclusively by Noble [6] 
in his comprehensive summary of the use of the Wiener- 
Hopf technique. 

The Wiener-Hopf analysis is able to provide both 
exact and approximate solutions, depending on the specific 
problem under consideration. It is particularly well suited to 
the study of wave diffraction at an edge and can, therefore, 
be used to treat problems involving idealized cracks. It is 
somewhat surprising that the appearance of this technique 
in the eddy-current literature is extremely rare. The only 
example known to the authors is that of Riaziat and Auld 
[7], who used the technique to solve a simple sub-surface 
crack problem. A more extensive treatment of a sub-surface 
crack in a conducting half-space has also been studied as a 
prelude to the work presented here 181. 

There are a few instances in which the Wiener- 
Hopf method appears in other areas of non-destructive 
evaluation. For example, the technique has been applied 
in a straightforward manner by Almond and Lau 191 in 
a method for defect sizing using transient thermography. 
The more complex problem of acoustic scattering by an 
inclined, surface-breaking crack has been solved by Datta 
[ IO]  in the low-frequency limit. His solution consists of 
matched asymptotic expansions for the scattered field both 
near to and far from the crack and uses the Wiener-Hopf 
technique in conjunction with the Mellin transform to find 
the terms in the asymptotic series. 

The solution to be presented here exploits the power of 
the Wiener-Hopf method more fully rhan former work in 
non-destructive evaluation in which the technique has been 
used. The closest parallel with this solution is found in the 
analysis of scattering by a slot in a homogeneous medium 
by Jones [ll]. The configuration of the crack problem 
examined here is more complicated, however, since the 
effect of the air-conductor interface must be taken into 
account. 

3. Problem definition and formulation 

The chosen orientation of the coordinate axes is shown 
in figure 1. It is assumed that the crack forms a perfect 
barrier to the flow of current, that the conductor has the 
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Figure 1. A surface-breaking crack in a conducting 
half-space showing the position of an arbitraly field point P. 

permeability of free space and that the displacement current 
is negligible. The fields are assumed to be time-harmonic 
and the uniform incident magnetic field in air, Hoe-"' 
(where angular frequency w = 2nf), is assumed to have 
only a y component. The electromagnetic skin depth, 6, is 
defined by 

(1) 6 = 
wPou0 

where PO is the permeability of free space and uo is the 
conductivity of the conductor. 

Let the total magnetic field be written H = H@). 
From Maxwell's equations it  is found that, in the conductor, 
@ ( r )  satisfies the Helmholtz equation: 

(V2 + k2)@'"(x ,z )  = 0 (2) 

where 

(3) 

is a two-dimensional Laplacian and k2 = iowu,,. Let 

@ C O  = @) + q, (4) 

where @(i) represents the incident magnetic field and @ 
the magnetic field scattered by the crack. The incident and 
scattered magnetic fields also satisfy (2) individually. At 
the airxonductor interface and on the faces of the crack 
the total magnetic field is constant, with value Ho, which 
means that @(') satisfies the boundary condition [3] 

Image theory can be applied lo the system shown in 
figure 1 and the half-space problem converted into a whole- 
space problem by reflecting the conductor in the plane 
z = 0. Upon reflection, a surface crack of depth d in 
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The continuity of +(x.z) across x = 0 (equation (10)) 
implies that Y(x, s) is also continuous across x = 0. This 
means that A($) = B ( s )  and, therefore, 

Y(x,s)  = A(s)e'x''', (15) 

The function Y(x, s) is now written as the sum of functions 
whose regions of regularity are known: 

Y(x ,s )=Y+(x ,s )+Y-(x ,s )+Yo(x ,s )  (16) 

where 
~ o ~ x , s ~ = ~ o + ~ ~ , s ~ + Y o - ~ x , s ~  (17) 

Y+(x,s) = $(x.z)e-"dz (18) 

K ( x ,  s) = + ( x ,  z)e-"dz (19) 

r 
1: 

L 
d 

WO+(X,S) =l @ ( x , ~ ) e - " ~ d z  (20) 

Yo-(x,s) = ~(x ,z)e-"dz .  (21) 

The regions in which *+ and Y- are analytic may be 
deduced via an argument given in detail by Noble [6, 
pp 50-11 in which the scattering by an edge is regarded 
as being produced by equivalent line sources (line sources 
are appropriate for two-dimensional problems). It can be 
deduced that, in the eddy-current case, Y+ is analytic for 
U z -ki and Y- is analytic for U < ki, where ki = h k .  
This means that there is a strip defined by -ki < U < ki 
and -03 < r < 03, shown in figure 2, in which both Y+ 
and Y- are regular. It will be seen that YO is regular in 
this strip and this means that Y is also regular there. The 
contour of (12) must, therefore, be such that -ki < c < ki 
and -03 < r < 03. The explicit forms of YO+ and 90- are 
found by inserting the boundary values (7) for the scattered 
field into (20) and (21): 

the plane x = 0 occupies the region defined by /zI 5 d .  
The incident magnetic field in the extended domain is 

Note that image theory is used to introduce an equivalent 
problem in which the y component of the magnetic field is 
odd in z. A current sheet in the plane z = 0 is the source 
of the field and accounts for the jump in the unperturbed 
magnetic field. In view of equation (5), the boundary 
conditions for the scattered magnetic field in the plane of 
the crack become 

-Izd = 0 IzI z d .  (8) 

Equation (8) follows from the even symmetry of the 
magnetic field with respect to x .  The magnetic field is 
constructed to be odd with respect to z in order to satisfy 
the boundary condition 

w,  0) = 0 (9) 

on the air-conductor interface. For an ideal crack, the 
tangential magnetic field is continuous at the crack plane. 
This means that $ ( x ,  z )  is continuous across the crack at 
x = 0, that is 

l w , z ) l x = o  = +(x,z)lr=o+ - 16.(x,z)lx=o- =o. (10) 

Following Jones' adaptation of the Wiener-Hopf 
method 1.51, the bilateral Laplace transform is used to 
transform the two-dimensional Helmholtz equation for the 
scattered magnetic field into a complex variable equation. 
The bilateral Laplace transform is given by 

where the complex variable s = U + i r .  The inverse of 
(11) is 112, section 9.71 

!w, z) = - Y ( x  , s) esT ds (12) 2z i  +iCO 

where c is such that the contour lies in the strip in the 
complex plane in which W is regular (to be defined). 
Applying (11) to the Helmholtz equation (2) for the 
scattered Geld gives 

where K = (sz + k2)'/' is assumed to have a positive 
imaginary part. Solutions of (13) which decay away from 
the scatterer are of the form 

A(s) eiKr x > o  

x < 0. 
(14) Y ( x , s )  = 

1 

The odd nature of the y component of the magnetic field 
with respect to z is demonstrated in (22) and (23) since 
Yw(0, s) = -Yo-(O, -s). The bracketed terms in (22) 
and (23) are associated with the crack edges at z = d and 
z = -d respectively. The remaining terms are associated 
with the conductor corners near z = 0. 

4. Integral equations 

Definitions (16)-(21) will now be used in the manipulation 
of (15) to obtain an equation of suitable form for solution 
by the Wiener-Hopf approach. The procedure now adopted 
relates the Laplace transforms of the scattered field and its 
normal derivative in the plane of the crack through A($) 
(equation (15)) which is then eliminated in order to obtain 
an equation containing only functions whose regions of 
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-k ki 
Figure 2. Regions of regularity in the complex plane. rY, is 
analytic for U > -&, $- for U c ki and XJ in the cross 
hatched strip, -k, c U c ki, in which the half-planes 
overlap. 

regularity are known. Applying equations (16)-(21) to (15) 
gives 

'P+(O, S) + Y-(O, S )  + 'L'o(0, S) = A b ) .  (24) 

The Laplace transform of the normal derivative of the 
scattered field in the crack plane is defined by 

(25) W ( X ,  s) = j m  W ( x ,  z )  e-" dz, 
-- ax 

Noting that W ( x ,  s) is continuous away from the crack and 
applying (25) to (15) gives 

[qh(X, s)lx=o = * h ( X ,  S)~X=O+ - '€'h(X, S) lx=o-  = 2iKA(s). 
(26) 

Eliminating A ( s )  from (24) and (26) and multiplying 
throughout-by e-"d/(s - ik)'/' gives 

2i(s + ik)'" e-'d[V+(O, $1 + *-(o, s) t wo(O, s)I 
e-Sd 

(s - ik)W [*&, s)lx=o. (27) 

This is the equation which will be solved to obtain the 
unknown functions Y+(O, s) and Y-(O, s) in terms of the 
known function qo(0, s). 

The right-hand side of (27) is regular in the half- 
plane U > -ki; the factor e-,"* has been introduced to 
ensure algebraic behaviour as s -+ 03 in the positive 
half-plane. Algebraic behaviour is necessary in order 
that Liouville's theorem (which plays an important role in 
the Wiener-Hopf method) can be applied. The function 
(s + ik)1/2e-,vd\V-(0,s) is regular and non-zero in the 
half-plane U c ki .  It is possible to split the expression 
(s + ik)1/2e-rd[W+(0, s) + Qo(0, s)] into the sum of two 
functions, X+ and X-, regular in right and left half-planes 
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respectively. The procedure relies on the use of Cauchy's 
theorem and is described by Jones [ll].  The condition for 
its application is that both uI+ and W, are regular in the 
strip U < Ikil. We introduce functions X + ( s )  and X - ( s )  
such that 

(s + ik)'/* e- .W+(o ,  s) + WO, s)] = x+(s) + x-(s) 
(28) 

where 
(U + ik)'lZ 

U - s  
X+(s) = -- 

2ni ' r c + j m  --c--im 
x[lv+(O, U) + Yo(0, u)le-uddu U > -c (29) 

x[Y+(O, U) + Yo(0, U)] e-ud du U < c. (30) 

Equation (27) may now be rearranged so that one side of 
the resulting equation is analytic for U > -kj and the other 
is analytic for U < ki : 

W ( X ,  s)lx=o - 2 i X + ( S )  
= 2i(s + ik)'IZe-'dqy_(O, s) + 2ix-(s). 

(s - ik)'/' ~ 

(31) 

By the standard Wiener-Hopf argument, both sides of 
this equation are equal to an entire function which, from 
consideration of the s-dependence of the terms in (31), is 
zero according to the extended form of Liouville's theorem 
[6]. From the right-hand side of (31) the following relation 
is obtained: 

In (32) the solution for 'P-(O, s) is expressed as an integral 
involving qt(O,s), The odd nature of @ with respect to 
z ,  which means that \V is odd in s, may be exploited by 
substituting -s for s in (32) and replacing Q-(O, -s) by 
-\V+(O, s). This yields the following integral equation for 
*+(Os s): 

where 

Substituting QO (the sum of (22) and (23)) into (34) gives 
eikd 'fim (U + ik)]/' [ 1 

P ( s )  = -- 
2n ' S  _im U + s  U u + i k  . ... - 

+--- 
U + %  U - i k  U 

+e-'' (- I 

(35) 

An equivalent expression for q - ( O , s )  can be found but 
since * + ( x , s )  = -Y-(x,-s) it is necessary to consider 
only W'+(x. s) in detail. 

' 
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The eddy-current long crack problem 

5. Series solution 

Equation (33) can be solved for high frequencies by an 
iterative process. This yields an asymptotic series solution 
for Y+(O, s) which may be written 

and cj is a coefficient. Since k = (1 + i)/& the ratio of 
successive terms is small when d >> 6. 

It is found that the two lowest order terms in the series 
are contained within P ( s ) ,  equation (35). The thud term 
is obtained in part from P(s)  and in part by substituting 
the lowest order term, Vf)(O,s), into the integral of 
(33). Terms of higher order are obtained by substituting 
successive terms into this integrai. The lowest order term 
represents the limit in which there is no coupling between 
the perturbed fields associated with the comers and edge of 
the crack. Higher order terms take account of interactions 
between the perturbed fields at the comers and edge of the 
crack. 

The first three terms in the series solution for Y+(O, s) 
will now be determined. The integrals to be evaluated in 
(35) have the general form 

where U = Res. As shown in the appendix, evaluating 
(38) yields 

(s - ik)'/'w{i[b(s - ik)]'/'} 
eikh 

I= 
(s ik COS+) 

-[-ik(1 cos+)l'/'w{[ikb(l  COS@)]'^^}} (39) 

w(z) = e-'erfc(-iz). (40) 
where [13] 

Special cases of expression (39) will be used in that which 
follows. 

The first two terms in (35) alone contribute to YT): 

The value of the first term in the integral of (41) can be 
found by putting + = x / 2  and b = 0 in (39) and that of 
the second term by putting + = 0 and b = 0 and using the 
positive sign option in (38). This gives 

The term of next order in the series solution for Y+ is found 
from the third, fourth and fifth terms in (35): 

Evaluating the integrals using (38) and (39) gives 

x w [  (2ikd)]'/']. (44) 

The third term in the series solution for W+(O,s), 
Yf'(0, s), consists of the final two terms in (35) and the 
result of substituting Yf'(0, s) into the integral of (33). 
Simplification by cancelling terms yields 
(s - ik)'/Z e Id Y+ 0) (0,s) 

1 c+im + *)I/' (-2) 112 

2n c-im U +s u(u - ik)'/2 
- - - - j  e-2ud du. (45) 

Approximate evaluation of (45) can be performed by noting 
that the value of the integral stems largely from the region 
of the branch point at U = -ik. At high frequencies, the 
branch at 16 = ik is sufficiently far from U = -ik to allow 
use of the approximation ( U  - ik)'lz S% (-2ik)'/'. Making 
this approximation and using (39) with + = n/2 gives 

e2ikd e -~J  
Y+ (2) (0, s) - (wji[2d(s - ik)]'I2) -/a 

The first three terms in the series solution for Y+(O,s) 
are thus given by equations (42), (44) and (46). The 
quantity of greater interest is, however, A@), from which 
the solution for the scattered magnetic field in real space 
may be obtained. We define 

A+($) = y+(O+ S )  + %+(O, S )  (47) 

and A-@) similarly so that 

A(s) = A+(s) +A-@).  (48) 

Then 

A+(s) = AT)@) + A$)@) + A?'($) + . . . (49) 

where 
A!,?($) E Yf'(0, s) + Yo+(O, s) 

At)@) = @(O, s) 

A+ 0 (s) Yf'(0,s) 

and so on. From the summation of (U) and (42), we have 
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From (50), (44) and (46) the ordering in the terms of the 
solution for A + ( $ )  is evident; 

A ~ ' ( S )  c( enikd. 

At high frequencies eikd -P 0 and A+@) iii AT)( s ) ,  
Similarly A(s) x. A'')(s) at high frequencies, at which 
A(O)(s) is the lowest order term in the series solution for 
4 s ) .  

6. Lowest order solution 

It will now be shown that the lowest order term for the 
magnetic field obtained in this analysis is equivalent to 
the de-coupled edge and corner fields given elsewhere [3]. 
From (48) and (50) it is found that 

Through (15) it is clear that the product A")(s) eiYIX' is the 
bilateral Laplace transform of the scattered magnetic field 
in the high-frequency limit, Y(O'(x, s). Formally inverting 
back into real space via (12) gives 

The first term in (52) is the Laplace representation of the 
Sommerfeld solution for scattering of a uniform incident 
field by a half-plane with edge at z = -d: 

The integration can be performed by shifting to the 
hyperbolic contour described by s = ikcos(0 +i t ) ,  -00 < 
I e 00 and shown in figure 3 [6] .  It is found that, in 
complete agreement with the result of Kahn et ~l 131, 

+w [ (2ikr) ' I 2  cos (! - $)] 1 (54) 

where x = -rsinB and z + d = r c o s e .  The third 
term in (52) is clearly similar to that just evaluated and 
is the Laplace representation of the Sommerfeld solution 
for scattering by a half-plane with edge at z = d. This 
term results from imaging the problem in the plane z = 0. 

Equation (54) can be re-written to show clearly the way 
in which current flow is uniform on the crack faces away 
from the edge. Using the identity 1131 

w ( z )  + w(-z) = 2e-Z' (55) 

the first term on the right-hand side of (54) can be re-written 
to give 

Figure 3. The shift in the s plane to the hyperbolic path 
described by s = ikcos(0 +it). 

+w [ (2ikr)'/'cos (i - ;)] ] x > 0. (56) 

The asymptotic form of w as r tends to infinity I 131 means 
that, near the crack but distant from the crack edge, 
approaches eikx which corresponds to uniform current flow 
over the faces of the crack. (An equivalent form can be 
found for x 0 by re-writing the second term on the right- 
hand side of (54) using ( 5 9 . )  

The second term in (52) is clearly very different from 
the other two and is associated with the perturbed field in 
the conductor corners near the crack mouth. We denote 

The above integral may be evaluated as follows. Firstly, 
note that 

&U 

d u +  - x > 0. (59) 
S S 

Substituting (58) and (59) into (57) and changing the order 
of integration gives 

The inner integrals of the first two terms in (60) can be 
evaluated by transforming to the hyperbolic contour defined 
by s = ikcos(O+ir) and -CO < t < 00, shown in figure 3. 
For example, 
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where the contour is now the perpendicular bisector of the 
line jointing ik and -ik and is indented around the pole 
at t = 0 in the usual way. Taking the Cauchy principal 
value, the contribution to (71) from the straight parts of the 
contour either side of the pole amounts to zero. AU that 
remains is the contribution of the residue at the pole: 

-L/  -ds 
c+im 

ni s 

- - - - j  - d t  = -&kX x > 0. (72) 
1 m eikrcarhf 

X I  -m tanht 

Substituting (72) into (69) gives, finally, 

@:!,2c,(x, E) = i[F(x, z) + F(z, x)] - eikr x z 0. 
(73) 

The firs1 two terms on the right-hand side of (73) correspond 
exactly with Kahn’s [3] solution for the total magnetic 
field in the conductor corner. The extra term arises here 
as a consequence of considering the crack as a coherent 
whole rather than treating the edge and corner perturbations 
as totally independent problems. Kahn’s edge and corner 
solutions both satisfy the boundary condition I) = 1 on the 
crack but here, since the lowest order solution is expressed 
as a sum of terms which dominate in the separate regions 
near the crack edge and mouth, the eikr term in (73) is 
needed to cancel that in (56) and thereby ensure that the 
boundary condition on the crack is satisfied. Summing (56) 
and (73) allows us to write the lowest order expression for 
the total magnetic field in the conductor, @(I,”): 

Using the identity [6] 

where H:) is the zero order Hankel function of the first 
kind, it can be shown that 

and, similarly, 

where 

The two parts of the integrand of the final term in (65) are, 
respectively, x- and z-independent. They correspond to the 
uniform current flow in the thin skin near the conductor 
surface at the air-conductor interface (x-independent) and 
at the crack faces (z-independent). It can be shown that the 
x-independent part of the final term in (65) has the same 
form as the transformed incident field: 

This means that, if (65) and (68) are summed to give the 
total magnetic field at lowest order, the expression (68) 
cancels exactly the x-independent p m  of the final term in 
(65). It is found that 

where is the lowest order term in the series 
expansion for the total magnetic field near the crack mouth. 
The remaining integral in (69) can be evaluated by writing 

- ds) 

(70) 
and again shifting the contour of intebation to that shown 
in figure 3. In this case, q4 + n/2 in the limit as z --f 0 
and 

dt 

(71) 

where x = -r sin 9, z + d = r cos8  and F is defined in 
(66). Equation (74) satisfies the boundary conditions on 
the crack and on the air-conductor interface. The terms 
containing w functions represent the field perturbation by 
the crack edge and those involving Hankel functions the 
field perturbation by the conductor comers at the crack 
mouth. 

Through (74) the correspondence between the high- 
frequency limit of the Wiener-Hopf solution for the field 
in the neighbourhood of a surface-breaking crack and the 
constructed solution of Kahn er al [3] is clear. The resulting 
change in impedance of the conductor in this limit due to 
the presence of the crack (which is usually the quantity 
of interest in eddy-current non-destructive evaluation) has 
been calculated numerically by Kahn er ai [3] and in closed 
form by Harfield and Bowler [14]. The calculation will not 
be repeated here. 

7. Discussion and conclusion 

The Wiener-Hopf method has been used successfully to 
find a rigorous, closed form solution for the field scattered 
by a long, surface-breaking crack in a uniform, normally 
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incident electric field. The theory is valid in the high- 
frequency regime, in which the crack depth is several times 
greater than the electromagnetic skin depth. Unlike in 
the constructed solution of Kahn et ai [3], however, the 
perturbed pa& of the field near the buried crack edge 
and crack mouth are not completely decoupled. The 
solution for the field contains higher order terms which 
describe these interactions (equations (44) and (46)) and, 
in principle, the iterative solution of (33) can be extended 
to even higher order. Although further manipulation of the 
'interaction' terms calculated here may only be possible 
via approximate methods, this theory triumphs in the 
emergence of the constructed solution of Kahn et al 131 in 
the high-frequency limit of the analysis, throughout which 
the surface-breaking crack is treated as a coherent whole. 

Finally, we note that a promising method by which 
this problem might be solved to produce tractable terms 
accounting for the interaction between edge and comer 
fields is by adapting the uniform asymptotic theory of 
diffraction [15] for application to eddy-current problems. 
In this way it should be possible to predict the impedance 
change produced by surface-breaking cracks of deplh as 
little as one skin depth with high accuracy. 

h 
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Appendix 

Integrals of the type 

where U = Res, arise in the Wiener-Hopf analysis of this 
problem through the de-composition of an irregular function 
into functions regular in different halves of the complex 
plane. The constant c is chosen such that it lies within the 
strip for which the integrand is regular, for example, when 
the pole is positioned at U = ik cos $, ki cos q5 G c < ki. 

In order to evaluate 2, the integrand in (Al) is split by 
partial fractions to give 

1 
Zn(s ik cos q5) 

(U + ik)'I2 'l:: (- U + s  u&ikcos@ 

z= 

) e-Ub du. (U + ik)]12 

The two components forming the integrand of (A2) may 
bc evaluated in similar ways since they differ only in the 
location of the pole. Following the method of Jones [ 1 I ,  
section 9.171 the evaluation of the first term in (A2) is 
assisted by defining: 

1 c+jm (U + ik)-'/Z 
I = -  J e-"'du U 7 -c (A3) 

~ 2R U + s  

, 

Re U 

Figure 4. The contour of integration in the U plane around 
the branch line from U = -ik. 

and noting that the form of the integrand in Z is related to 
I through 

. I  

From (A3) it is found that 

(U + ik)-'/' du. (A5) - = -- 
I rim a(e-sbr) 

ab =-im 

Fork with positive real and imaginary parts, the branch line 
from U = -ik can be chosen as shown in figure 4. Since 
there are no singularities within the contour, the value of 
the integral around the closed contour is zero. Since, for 
b z 0, 

as Re U -+ 03, the contributions from the parts of the curve 
denoted by C, and C, in figure 4 are also zero. This means 
that the integral of (AS) can be evaluated by integrating 
around the branch line from U = -ik, namely along C,. 
Integration along either side of the branch line leads to the 
same result so that the branch integral may be evaluated by 
integrating along one side only and doubling the result. 

The change of variable, U = -it - ik, in (A5) gives 

which is [I61 
a(e-bbl) e-b(a.-iK) 

(A7) 

Consider the case in which b = 0. The integral I of (A3) 
may then be evaluated by deforming the contour to the left. 

- - -- - 
ab (xb) 'f l '  
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Only the pole at U = -s contributes, resulting in 

1 
U > -c. - - 

(s - i k ) ' / 2  
From (A7) and (A8) 

It is possible to show that 

where [ 131 

Substituting (A10) into (A4) gives 

eiXh 
- (s - ik)'/'eikbbw(i[b(s - ik)J'/'). 

( rb)* l2  
It remains to consider the second integral in (A2). Defining 

so that 

The eddy-current long crack problem 

The value of (Al) may now be written down by combining 
results (A12) and (A15) through (A2): 

-[-ik(1 ~ ~ ~ ~ @ ) ] " ~ ~ { [ i k b ( l  F C O S @ ) ] ' ~ ]  . (A16) t 
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