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Vector-Potential Boundary-Integral Evaluation
of Eddy—Current Interaction with a Crack

J. R. Bowler, Y. Yoshida, and N. Harfield

Abstract—In eddy-current nondestructive evaluation, an ex-
citation coil, used to induce current in a conductor, changes
impedance in the presence of a crack. The impedance change
can be calculated from a knowledge of the coil parameters, the
excitation frequency, and the crack geometry. Two boundary
integral formulations of the problem are compared. The first
formulation uses an electric field integral equation, and the
second expresses the magnetic vector potential in integral form
using an integral kernel with a weaker singularity. The vector
potential formulation, presented here for the first time, leads to a
more complicated equation but has a singular kernel that is easier
to deal with. In addition, the new approach opens up a number
of possibilities for further analytical developments. An example
calculation is performed for a long, surface-breaking crack, and
the results are compared to available analytical solutions. Very
good agreement is found between the numerical solution of the
integral equation and the analytical results.

Index Terms—Crack, eddy-current, integral equation.

I. INTRODUCTION

RACKS in metals are frequently irregular, but theoretical
Cpredictions of their effects on eddy—currents are tractable
using an idealized form of the problem. An ideal crack is
one that has a negligible opening, is impenetrable to electric
currents, and is defined on a smooth, regular open surface. In
a previous study [1], it was stated that such a flaw produces
a discontinuity in the electric field of a form that can be
reproduced by a surface layer of current dipoles, the dipole
orientation being normal to the crack surface. This means
that the effect of the crack is the same as an equivalent
electric source in that the scattered field may be viewed as
being generated by a dipole layer. The main benefit of this
approach, apart from its intuitive appeal, is that it reduces
a three-dimensional vector field problem to one of finding a
single component vector, the dipole density, on a surface. The
surface dipole density is determined by a Fredholm integral
equation of the first kind. An expression for the driving point
impedance of an eddy-current probe due to the crack [1] is
derived using a reciprocity theorem [2].

The boundary conditions of an ideal crack are reviewed here
along with the electric field integral equation (EFIE) method
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for computing the scattering at an ideal crack [1]. The EFIE
approach is then compared to a vector potential formulation
of the same problem leading to a different integral equation
for the dipole density.

Eddy—current theory thus gives us a choice between two
boundary integral methods. These choices have parallels in
ordinary scalar diffraction theory [3] as well as in antenna
theory where one has the alternatives of Poklington’s electric
field or Hallen’s vector potential equation for calculating the
current in a wire antenna [4], [5].

As in antenna theory, the vector potential formulation leads
to an integral equation with a kernel that has a weaker
singularity than that of the corresponding electric field integral
equation. The hypersingularity in the latter can be dealt with
directly using a numerical scheme that interprets the integral
operator as a Hadamard finite part [6] following the approach
used in [1]. An alternative, and to many the preferred option,
is to regularize the integral equation through analytical rather
than numerical means. In the process of regularization, the
integral equation can be transformed to one where the kernel
has a weaker singularity. The new kernel means that the
principal value of the singular integral can be used following
classical potential theory [7].

The relative merits of the two formulations are not yet
fully explored. However, the ability to achieve numerical
stability and to control errors in the results are significant
considerations. Although these are important issues, they are
not considered further in this paper. Instead, we examine
the possibility of using the vector potential formulation for
calculations where the skin depth is small compared to the
characteristic size of a defect. In pursuit of this objective,
a link has been made between the vector potential integral
equation and the high-frequency limit theories of Auld et al.
[8] and Michael et al. [9]. In the high-frequency limit, the
field is determined from solutions of the Laplace equation in
two dimensions whose domain is the crack surface. Using the
vector potential formulation, it will be shown that the surface
Laplacians emerge naturally as the limiting case of an integral
equation valid at arbitrary frequencies.

II. CRACK INTERFACE CONDITIONS

Consider an ideal crack defined on an open surface S in a
conductor carrying alternating eddy current varying as the real
part of exp (—iwt). Because Sy does not support a singular
surface current, the tangential magnetic field is continuous
across it. With A denoting the difference in field between
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adjacent points on opposite faces, this condition is written
AH,=0. L

The subscript ¢ refers to components tangential to the surface
So. For ferromagnetic materials containing a crack with a small
opening, (1) may not be an appropriate idealization, but the
present analysis is valid for materials whose permeability is
that of free space.

Since the magnetic flux density has zero divergence, its
normal component, B,, is continuous at the crack. This
condition is written

AB, =0 @

at Sy. From (2), together with Faraday’s induction law, it can
be shown that V- [, x AE,] = 0, 7 being a unit vector normal
to So. This property of the electric field at the crack surface
allows us to write AE; as the gradient of a surface scalar
function. Thus, we introduce a surface scalar function p(ry),
ro € Sp, such that

1
AE, = —; Vip (3)

where V, = V—7(0/0n) is the gradient tangential to Sy, and
o is the conductivity of the material. Equation (3) expresses
the jump in the electric field at the crack in terms of a surface
function p that we interpret as the current dipole density. The
justification for this view is that (3) can be derived by an
alternative route, whereby, the discontinuity in the field due
to a dipole layer is derived. The derivation applicable to eddy
currents is much the same as that used in electrostatics, where
charge dipoles give rise to a jump in the electrostatic field [10].

Apart from the above interface conditions, an ideal crack
is characterized by a boundary condition that states that the
normal component of the electric field at the surface of a crack
is zero. This condition is written

Ey =0 4)

where the superscript & refers to limiting values as Sy is
approached from one side or the other. The subscript n
denotes the component normal to the surface Sy. Equation
(4) is based on two assumptions. First, no electric current
crosses Sg. Second, current causing charge buildup on the
crack faces is negligible. The second assumption implies that
displacement current across the crack is negligible compared
to the magnitude of charge current flowing around the crack.
At typical eddy-current frequencies (<10 MHz), this is a
very good approximation unless the crack opening approaches
atomic dimensions, in which case (4) must be modified.

1. ELECTRIC FIELD INTEGRAL EQUATION

A suitable dyadic Green’s function may be employed to
transform the effective source p = 7ip into the scattered electric
field [1]. Since p is a surface distribution, it is appropriate that
the scattered field is expressed as a surface integral over Sj.
The total electric field is then given by

EW:E@@+WWL§WW%Wﬂw’ (5)
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where E® (r) is the incident field. G(r|r) is an electric dyadic
Green’s function which satisfies

V x V x G(r|r') — E2G(r|r') = Z6(r —+') (6)

and subject to the same continuity conditions at an
air-conductor interface as the electric field. In (6),
T = & + §f + 2% is the unit tensor and k? = iwpugo.

The unflawed test piece will be treated as a half-space
conductor whose permeability is that of free space. The
dyadic Green’s function G(r|r’), defined both in air (where
o = 0) and in the conducting half space, is given in [11].
At the interface in the plane z = 0, # X G(r|r’) and
. x V x G{r|r') are continuous, thus ensuring that the
tangential electric and magnetic fields are continuous.

Using the ideal crack boundary condition, (4) in conjunction

with (5) gives an integral equation for the dipole density
EO(r=) = —iwug lim / G (rE e p(r ) dST (7)
r—r SO

where G™® = @ - G - 4. A numerical scheme for calculating
the dipole density from (7) is given elsewhere [1].

An important attribute of p is that it vanishes at the edge of
the crack [12], a property exhibited naturally by the solution
of (7). Note that while (7) gives the correct edge behavior
automatically, in the following vector potential method the
edge conditions must be imposed as an auxiliary condition.

IV. VECTOR POTENTIAL FORMULATION

A. General Development

In this second approach, a conventional magnetic vector
potential is defined such that the magnetic flux density is given
by

B(r) =V x A(r) ®)

where B(r) is the magnetic flux scattered by an ideal crack,
and A(r) represents the scattered field. Application of the
Maxwell-Ampere law in the form V x H = cE®) gives
the scattered electric fleld as

HWﬂ:j%VXVxMﬂ. 9)

Adding the incident field gives the total electric field in the
form

mﬂzﬂ%ﬂ+i;vaXmﬂ
Hoo
at points in the conductor not on the flaw.

The Lorentz gauge has been chosen which means that, for
eddy—current applications, V - A(r) = poo¢(r) where ¢(r) is
a scalar potential. Standard analysis following this choice of
gauge shows that A(r) satisfies the Helmholtz equation

(V2 +EHA(r) =0

(10)

1n

in homogeneous regions of the conductor. The formal solution
of (11) is written as

A@)=uoéggdﬂﬂlp&9¢y

(12)
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which is a form that allows us to recover the electric field
integral equation (5) by using (10). In (12), Ga(r|r’) is
the appropriate Green’s function for transforming the dipole
density into the vector potential. This function is related to the
electric field dyadic Green’s function by
1

G(rlr') = = V x VX Galr|r'). (13)
For a half-space conductor, the vector potential dyadic Green’s
function is given by

Galrlr) =Zo(rir’) + T o(r|r’")

1
+ V x V' x 2V (r|r').

where 7' = £+ 44— 22 and ¢(r|r’) is the unbounded domain
scalar Green’s function given by

(14)

eik}r—r’|

P(rlr') = (15)

dxlr — /|’
The coordinate ¥’ = 7' — 2%z’ locates an image point
corresponding to a point at 7’ reflected in the plane of the
surface of the conductor. Also, a function V(r|r’) has been
introduced given by

s [ [ (21

e VEHE ) Fiu(e—a)tivl—y) gy 4y (16)

where x? = u? + v? and 42 = k2 — k2. By combining

(13)—(16), one obtains an explicit expression for the electric
field dyadic Green’s function [11].

Applying the ideal crack boundary condition given in (4)
to (10) gives

. .
[an ~ 5n Vt} 'A("'i) = MoJr(l)(Ti)

a7
with J§ (r£) = ¢E (r*) being the normal component of
incident current at the crack. The second term on the left
hand side of this equation leads to complications that can be
temporarily put to one side by considering a special case in
which 8[V; - A(r*)]/n happens to be zero. In this case, the
conductor fills all of space and the crack surface occupies a
finite region of a plane.

B. Unbounded Domain

For such a planar crack in an infinite conductor, the mag-
netic vector potential A(r), like its source p(r), is directed
normal to the crack surface Sy. This is the case because the
Helmholtz equation does not couple components of A(r), the
operator V2 being a scalar operator. Furthermore, without an
interface present, there is no possibility of coupling between
components through the interface conditions. Therefore, the
plane crack gives rise to a surface dipole distribution that is a
unidirectional electric source and the vector potential itself is
also unidirectional. Thus with only one vector component to
consider, A(r) = AA(r), and

VZAEE) = po IO (r¥). (18)
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In (18), the normal component of the vector potential at Sy
is related to the incident current via a two-dimensional (2-D)
Poisson equation, but we cannot obtain an explicit solution of
the equation directly because the boundary conditions on A at
the crack edge are unknown. Instead, (18) is combined with
the unbounded domain version of (12) to give

v? (rE|r)p(r') dS’ = JO (). (19)
So

Equation (19) is an integro-differential equation for the dipole
density. Integrating (19) over an extended domain gives

o / St () dS' + p(r*) = $(i)rE)  (20)
So

where (rp) is an unknown function satisfying the 2-D
Laplace equation. Thus
Vi(ro) = 0. 1)
4@ is the particular integral of J,(f) defined through the
relationship!
PO (ro) = poV;y 2J8 (ro). (22)

Equations (20) and (21) contain two unknown functions
which must be found simultaneously to give the dipole density.
The function ¢ is a solution of the Laplace equation, but
the boundary conditions are not available. Instead of using
boundary conditions that apply directly to 1, the solution of the
Laplace equation must be chosen such that the dipole density
satisfying (20) has the correct behavior at the perimeter of the
crack. At the buried edge, the energy dissipated is bounded
provided that the dipole density vanishes. For a subsurface
crack, this means that the dipole density must be zero along
the entire crack perimeter.

A suitable numerical scheme for computing the dipole
density may be constructed based on a finite number, say
N, of nodes. These are distributed both at the edge of the
crack and at suitable places on the crack surface. The dipole
density associated with each node will be found. For those
nodes at the edge, it is already known that the dipole density
is zero. The solution of the Laplace equation, 1, is expanded
in terms of a suitable basis whose expansion coefficients are
unknown. By making the number of terms in the expansion
equal to the number of edge nodes, the total number of
unknowns is the same as the number of nodes. The integral
equation is approximated by a discrete form by introducing
an interpolation scheme and treating the nodes as collocation
points. In this way it is possible to arrive at an N x N
matrix of equations whose solution gives the dipole density
at the internal nodes and the expansion coefficients for the
approximate solution of the 2-D Laplace equation.

IThe Poisson equation V:f = h, has a solution of the form f = P + ¢,
where ¢, the general solution (GS), satisfies the Laplace equation and ¢ is
the particular integral (PT). It is convenient to express the PI using an inverse
Laplacian operator as P = V~ 2h.
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C. Half-Space Conductor

Before considering further the numerical solution of (20),
the theory will be generalized to deal with a surface crack
in a half-space. For a surface-breaking crack, the term that
was temporarily dropped from (17) is retained, writing its
integrated form as

3
n
il — V2 - A(

™) +9) =¢OF). (@3

Combining this with (12) gives
10 / G )p(r') dS' +o(r*) = D () 24
So

where

(25)

As before, the dipole density that we seek is zero at the buried
edge of the crack. At the intersection between the crack and the
conductor surface, a different edge condition must be applied
to the dipole density since it will not in general be zero there.
Note that the normal component of the electric field is zero at a
point inside the conductor in the limit as the point approaches
the air—conductor interface. As a consequence and in view of
(3), the dipole density satisfies the condition

op

9z
at points where a perpendicular crack meets the surface of the
conductor in the plane z = 0.

Note that for a perpendicular crack whose normal is in the
z-direction, (14), (16), and (25) combine to give

=0 (26)

G(r)r’) = ¢(r|r') + ¢(rlr”") + V(z|r) 27N
where
V(rjr') =V; 2 ———V(’r[’r')
1
T an? / / — ( - J)
—’y(z-l—z Ytiu(z—z')+iv(y—y") du dv. (28)

Equations (27) and (28) define the kernel to be used in solving
(24) for the dipole density on an ideal crack in a half-space
conductor.

V. HIGH-FREQUENCY LiMIT

As the frequency of the excitation increases, the skin depth
decreases and hence the range of the interaction between
dipoles is reduced. As the dipole interaction becomes more
localized, the effects of the Green’s kernel (27) representing
this interaction becomes more confined to the immediate
vicinity of the source point. A useful way of examining the
limiting case is to seek a representation of the integral operator
in the form of a power series expansion in (ik)~!. Suppose
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the region considered is a few skin depths away from the
edge of the crack and from the surface of the conductor. In
such regions, the effects of reflection from the interface are
negligible and the dipole interaction is represented by integrals
of the form

eik[r—r’| , ,
h(T):/SO mf(T)dS

where 7 € Sy and 7’ € Sp. Because edge effects are neglected
and the range of interaction is small, one can modify the
integral by restricting the area of integration to a circular
region of radius Fg about a point whose coordinate is . Thus,
we write R = 7' — 1 to give

= [ [ G gt

where Rg >> 6, with § being the skin depth. As the range
of the exponential is effectively limited to a few skin depths,
the radial integral can be approximated by setting the upper
limit to co. Expanding f(r + R) as a Taylor series about r
and integrating gives

h(r) =

+R)dRdf

) :
- O([ik]™2). 2
5o J (1) + Ok ™) (29)
Applying this argument to (24) and noting that ¢® (r®) is
negligible over most of the crack, it may be shown that at any
point on the crack that is a few skin depths from its perimeter,

22k¢ (’l"o)
Ho

p(ro) = €Y
to a first approximation. This means that, at first order, the
dipole density is a solution of the Laplace equation in two
dimensions in the domain of the crack surface. Again to first
order, the integral operator has the representation

/vdS'qS('r, ') o ——51—]; / ds'8(r — 1)

at points that are at least a few skin depths from the crack
perimeter.

(€2Y)

VI. NUMERICAL IMPLEMENTATION

The vector potential formulation has been used to calculate
the interaction of eddy currents with a surface crack of uniform
depth d and infinite length. The crack is subject to an incident
electric field that is uniform along its length but varies with
distance in the direction normal to the surface of the conductor
as

EQ(2)

= Ey exp (ik|z|) (32)

where Iy is the unperturbed electric field at the surface of the
conductor. In this problem, the perturbed field varies in two
dimensions in a plane perpendicular to the direction of the
crack. Approximate analytical solutions are available for both
high [13], [14] and low frequencies [15]. Here comparisons
are made between the analytical expressions for the dipole
density and impedance change due to the crack, and numerical
calculations made. using boundary elements.
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In the 2-D crack problem, the vector potential formulation
yields the following integral equation:

0
o / G(z, 2)p(z)dz +az + B=9D(2)  (33)
—d
where the Green’s function is given by
; .
Gz, /) = 7 HO (klz = #1) + 7 HO (bl + 21). - G4

In addition, the boundary condition on p(z) is expressed as

p(~d) =0 (35)
dp _
s . =0. (36)

The method of moments is applied to solve (33) numeri-
cally. Let us subdivide the crack region, —d < z < 0, into m
sections and denote the z-coordinate of the two edge points
of the jth section as z; and z;y1, where z;11 — z; = Az,
21 = —d and z,4+1 = 0. Introducing the piecewise linear
basis function, the dipole density p(z) is expressed as

m-+1
p(z) =Y Nj(=)p; (37)
j=1
where the basis function is
I /| T
Nj(z) = Az I it (38)
0, otherwise
where j = 1,---, m—2. A specia1 treatment is needed to

impose the Neumann-type boundary condition (36). Here, the
quadratic interpolation function is used only in the mth sec-
tion [Zm, Zm+1). Assuming the continuity of the interpolation
function and its derivative at z,, and applying (36), we have
{

2= Zm— .
I—L-A—z—ll, if 2,0 <2<2n
Nm-1(2) = 22— 22, . (39)
T AR if 2 <2 < Zma
L 0, otherwise
( —
I—M—l—‘, if 21 < 2 < Zm
Az
N (2) =1 2% — 22 ) (40)
" 1_'—273’2_2"17 lemSZSZm—H
0, otherwise
and Np,41(z) = 0. Thus, (37) can be rewritten as
m
p(z) = > Nj(2)p; @1)
i=2

where the boundary condition (35) is used.
By applying the point matching method, (33) yields

m .0
Ho E / Gz, Z)N;j(2)pj dz’' +azi+8 = D (z;) (42)
j=2 /=4

where z; is a z-coordinate of sth matching point. When we
have m + 1 matching points, i.e., {1, 22, ***, Zm+1}, the
following linear algebraic equation system is obtained:

[C{p} = {R} 43)
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conductor
-<— crack
-d Veeq ge’

Fig. 1. Geometry for the 2-D problem of a surface-breaking crack of uniform
depth.
where
{p} :{p27p37 oty Dmy @ /B}T (44)
(R} ={9O(z1), -, $9 (zms1)} (45)

and [C] is the (m+1)th order square matrix whose componénts
are given by

0
ug/ G(Z,', z’)Nj.|_1(z’) dz’, lfj <m,
Cii = -d
ij
2,

if j = m,
1, if j=m+ 1.
(46)

The integral in (46) is evaluated numerically using the
Gauss—-Legendre quadrature scheme.

VII. NUMERICAL RESULTS

Examples of numerical predictions are presented and com-
pared to analytical solutions for the 2-D problem of a long,
surface-breaking crack of uniform depth in a uniform incident
field. The geometry is shown in Fig. 1. The incident field is
assumed to be Y& = —pugHy exp (ik|z|)/ik, where Hj is
the magnetic field at the conductor surface. The values for
conductivity and crack depth used in the computation are
1.0 x 108 Sm~?! and 1.0 mm, respectively.

Analytical solutions are available in the high-frequency
regime, where the crack depth d is much larger than the
skin-depth § = /2/wpgo (typically, we require d/6 > 3
for high-frequency solutions to be valid), for intermediate
frequencies (that is, % < d/§ < 3) and in the low-frequency
regime where d/é < 1. In this section, results of comparisons
between numerical calculations and analytical results are made
for high and intermediate frequencies. Results for the low-
frequency regime are presented elsewhere [15].

A. High-Frequency Regime

In the high-frequency regime, where the crack depth is much
larger than the skin depth, an analytical expression for the
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185 =Im{p/H,) -
18‘0 1 I 1 1 1 1

-0.10 -0.08 -0.06 -0.04 -0.02 0.00
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(b)

Fig. 2. Comparison of numerical prediction and analytical solution for
the dipole density at the crack near the air—conductor interface in the
high-frequency regime. (a) d/6 = 5. (b) d/§ = 10.

magnetic field valid near the conductor surface is found in [13].
Fig. 2 shows the distribution of the dipole density calculated
from this solution in the cases of d/§ = 5,10. The computed
results agree very well with the analytical solution. For the
numerical calculation, the crack region was divided into 100
sections. This means that 20 and ten mesh divisions per skin
depth were used in the respective computations.

An analytical solution for the fields in the vicinity of the
buried crack edge was recently presented in [14]. From this
solution, an expression for the current dipole density on the
crack near its buried edge can be found:

p(n) = — Ho [(%kn — Derf (—iv/ikn) + % \/ikn €%
47

where 7 = z4-d and erf (z) is the Gaussian error function. The
derivation of (47) is given in the Appendix. Fig. 3 shows the
distribution of the dipole density in the cases of d/§ = 5, 10.
The computed results agree very well with the analytical
solution given in (47). ’

In the high-frequency limit, the effect of the Green’s func-
tion becomes concentrated within the vicinity of the source
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6.0 T T T T T T T

-—-—  Analytical solution
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50 F

Real part of dipole density, Re{p/H,)

OO (_, e L 1 1 i 1 1
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()

Imaginary part of dipole density, Im(p/H,)

40 b —— Analytical solution )
O Numerical solution
5.0 L 1 L 1 " 1 L
-1.00 -0.95 -0.90 -0.85 -0.80
Location, z (mm)

®)

Fig. 3. Comparison of numerical prediction and analytical solution for the
dipole density at the crack near its buried edge in the high-frequency regime.
(a) Real part of dipole density. (b) Imaginary part of dipole density.

points. In this case we have, corresponding to (30),

p(z) ~ szw(z).

Ha
Fig. 4 shows the comparison of the computed results of the
dipole density and 2iky(z)/puo in the case of d/6 = 10. It
is found that our numerical prediction also demonstrates the

validity of (48).

(43)

B. Intermediate-Frequency Regime

In the intermediate frequency regime, where % <d/§ <3,
an analytical solution for the equivalent current dipole density
on the crack is unavailable. It is, however, possible to compare
numerically calculated values for the impedance change due
to the crack, AZ, with the equivalent analytical expressions
for this range of skin depths. ‘

The impedance change is computed from dipole density
results of the numerical scheme via the following relation,
which is derived using the reciprocity theorem [2]:

PPAZ =~ | E9(r) p(r)ds.
So

(49)
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30 7 T T T T T T T T
" —  2ikyy,

20 b O Computed dipole density

10

Real part
0

Dipole density, p/H,

Imaginary part

] 2 1 n

-0.4 -0.2 0.0
Location, z (mm)

Fig. 4. Comparison of computed dipole density with Laplacian term
(2ikep/po) in the high-frequency regime.

Two analytical solutions have been presented for this fre-
quency range. The first employs Laplace transforms and the
Wiener—Hopf technique [16] and yields a solution in the
form of an ordered series in terms of the Laplace transform
variables. The second solution method, whose result will be
used here, is based on the Geometrical Theory of Diffraction
[17]-[19] and yields an approximate solution whose derivation
is presented in {20]. The solution builds on that for the thin-
skin limit by allowing interaction between the perturbed parts
of the field at the crack mouth and edge. These perturbations
are assumed to be decoupled in the thin-skin limit. This latter
analytical solution is chosen for comparison with the numerical
model presented here due to the simpler form of the result. The
analytical expression for the impedance change is expressed
as a sum of terms

AZ=Zs+Ze+ Z. (50)
where Z¢ is the contribution from current flowing uniformly
over the crack faces, Z, is the contribution from the field per-
turbations at the buried crack edge, and Z. is the contribution
from the fields in the conductor corners near the crack mouth.
It is found that [20]

_ 1/ Hy 2 .
1/ Ho\? ;
7, - - L (_0) (_1 ~ 2v/2e™ 4 (Vaikd
, o\ I

_ ¢2ikd [(4@1«1 - 1)w(m) _ _\% \/m}
+[N+(P+ 1)Q]{Z - +6ikd':<2ikd+ %)

cw(V3iRd) - — VZikd - 2
(2ikd ) ﬁ jl

+ eﬁ w(V2ikd ) - e4"’°dK2z‘kd+ i)

)

1 1

(52)
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Fig. 5. Comparison of numerical prediction and analytical solution for the
impedance change due to the crack in the intermediate- to high-frequency
regime.

where w(z) = exp (—22) erfc (—iz), erfc(z) = 1 — erf (2)

o) - = ]

VT \/2ikd

N = e e D)
| ik [w(m) - 7% o
1 J
62ikd l:,w /4’Ll€d - L 1 :I
l_ezikd[w(\/m>—7z—; 1
vat ]
0=1- kz{Hg”(kz) + g [Ho(k2)HD (kz)
—Ha (k=) HS (k)] } (55)

HZ-(l)(z) is the ith-order Hankel function of the first kind, and
‘H; is the ith-order Struve function, and

Zom — %(?)2{2 - \/5[(2ikd+ 1) erfe (V=ikd )

—% ikd ikd} } (56)

™

The above approximate expression for Z, is used because the
full expression (given in [20, eq. (129)]) involves three nested
sums and is time consuming to compute.

Fig. 5 shows the comparison between numerically and an-
alytically calculated values for AZ. In the numerical calcu-
lation, ten mesh divisions per skin-depth were used. There
is very good agreement over the range of d/é for which the
analytical solution is valid (for d/§ > 2). For d/6 < 3, it is
clear that the theory for intermediate frequencies breaks down
as the low-frequency region is entered.

VIII. CONCLUSION

The vector potential formulation provides an alternative to
the electric field integral equation for calculating the equivalent
source of an ideal crack at arbitrary frequencies. Numerical
solutions have been found from the vector potential integral
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equation using a suitable discretization scheme based on
the moment method [21]. Numerical solutions have been
compared to approximate analytical results for a 2-D crack
problem and very good agreement is found.

The new formulation has been used to show that, in the high-
frequency/thin-skin limit, the equivalent source of an ideal
crack (the surface dipole density) is, to a first approximation,
a solution of the Laplace equation at points away from the
edge and mouth of the crack. In the 2-D example considered
here, the field at the buried crack edge can, in the high-
frequency limit, be approximated by Sommerfeld’s solution
for diffraction at a half-plane [22]. At the corners where' the
crack intersects the surface of the conductor, the characteristic
corner solutions are found [13].

APPENDIX
DIPOLE DENSITY NEAR THE CRACK
EDGE IN THE THIN-SKIN LiMIT

As explained earlier, the field perturbations due to the crack
can be considered as those produced by an equivalent layer of
current dipoles p. The dipole density is related to the jump in
the tangential component of the electric field across the crack
by (3), which can be written

Ef -E; = —é Vep (A1)
where the superscripts indicate the limiting values as the crack
surface is approached from one side or the other. In the 2-D
problem of a long, surface-breaking crack of uniform depth
with uniform applied field, described in Section VII, symmetry
allows us to write

(A.2)

from which p,, can be calculated if F is known. An analyticaly

expression for F near the edge of the crack is derived in [14]:
ik H i etkn
E+ = B0 rf(—\/'k ) S
e A ALD Ry
where 7 = z + d and erf (z) is the Gaussian error function.
From (A.2) and (A.3),

(A3)

ik7

pe(n) = —2ikHo /Ozk[erf (-fozk_ﬁ> + :/3—; %Z?J dn

=1, [(Zikn ~erf (-z\/%) ;2

. ikn
N tkne ]

(A4)

which is (47) of the main text.
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