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Evaluation of Probe Impedance Due to Thin-Skin
Eddy-Current Interaction with Surface Cracks

J. R. Bowler and N. Harfield

Abstract—Crack detection using eddy-current nondestructive
testing is often carried out at frequencies such that the skin
depth of the induced current is much smaller than the crack
dimensions. The induced current then flows in a thin skin at
the conductor surface and at the faces of a surface crack. In
the case of a crack that acts as an impenetrable barrier to
electric current, the electromagnetic field at the crack surface
can be represented, at an arbitrary frequency, in terms of a
potential which satisfies a two-dimensional Laplace equation.
The boundary conditions required in the solution of the Laplace
equation have not yet been determined for the general case, but
we have derived approximate boundary conditions which are
applicable in the thin-skin regime. The conditions derived are
valid for cracks in materials of arbitrary permeability. From
the harmonic solutions of the Laplace equation, the impedance
change of the excitation coil due to the defect has been calculated
for cracks in aluminum and ferromagnetic steel. Comparisons
between predictions and experimental measurements on rectan-
gular slots show good agreement, thus corroborating the theory
and the numerical calculations.

Index Terms—Crack, eddy current, Laplace equation.

I. INTRODUCTION

EDDY-CURRENT nondestructive testing is commonly
carried out on metals at a single frequency using an

induction probe which senses the presence of cracks through
changes in its driving point impedance. These tests are often
performed at frequencies such that the electromagnetic skin
depth is much smaller than the crack depth. Thin-skin condi-
tions are particularly common in the testing of ferromagnetic
steel due to its high value of relative permeability.

In the thin-skin regime, the interaction of eddy currents
with cracks can be described with the aid of solutions of the
two-dimensional (2-D) Laplace equation in a domain which
corresponds to the face of the crack. This approach overcomes
the resolution problems inherent in schemes that rely on a
mesh or cellular grid to represent variations in the field on the
scale of a skin depth. Given that a 2-D Laplace equation is
to be solved, it is necessary first to determine the boundary
conditions that apply at the perimeter of the crack face, that
is, at the buried edge of the crack and at the boundary where
the crack intersects with the surface of the conductor, the latter
being referred to as the crack mouth. These regions are shown
in Fig. 1.
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Fig. 1. A normal coil over a surface-breaking crack in a conductor. The
crack is modeled as a rectangular region.

The boundary conditions on the surface Laplacian have been
considered by Auld [1] for calculations of the probe impedance
due to cracks in nonmagnetic materials and by Collinset al.
[2] in a related problem involving cracks in ferromagnetic ma-
terials. Auld adopted an approximation which equates the total
magnetic field transverse to the conductor surface at the mouth
of the crack with the unperturbed field. This implies that the
contribution to the tangential magnetic field at the crack mouth
due to perturbations by the crack itself is negligible. Although
Auld’s approximation leads to satisfactory predictions, a useful
advance on this theory could be made if the effect of the
perturbed field is included in the mouth boundary condition. In
the approach presented here, the problem is formulated without
recourse to Auld’s approximation.

An alternative thin-skin crack theory, intended for ferromag-
netic materials, has been developed over a number of years by
Collins et al. [2]. Rather than using a boundary condition at
the crack mouth, a continuity condition is proposed whereby
the field on the surface of the conductor is matched with that
on the face of the crack. This implies that the domain of the
problem does not consist of the crack face alone. Instead, the
problem domain includes the half-plane representing one-half
of the surface of the conductor joined to one crack face at a
line of intersection known as the fold line. The crack face
is unfolded into the plane of the conductor surface and a
solution of the Laplace equation found in the domain of the
unfolded crack face and adjoining half-plane. It is assumed
that the normal current and the normal magnetic flux are
continuous at the fold line, and consequently, a complex
potential describing the surface field is analytically continuous
at the line. The assumption that the normal flux in a thin skin
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flows continuously from the surface of the conductor to the
face of the crack is acceptable provided that the permeability
is high and that there is a finite gap between the crack faces. If
the permeability is not sufficiently high and the gap between
the crack faces is small, then there will be a tendency for
the flux to flow across the crack rather than around it. Hence
the conditions required for analytic continuation represent a
limiting case of a more general theory.

Thin-skin eddy-current interaction with cracks in materials
of arbitrary permeability were considered by Lewiset al. [3]
who derived a mouth boundary condition using a conserva-
tion of flux argument and the surface impedance boundary
condition. Here an approach is taken which does not make
thin-skin assumptions at the outset, but establishes the required
boundary condition at the crack mouth as a limiting case of
a theory applicable at arbitrary frequency and skin depth. The
results are comparable with, but differ in detail from, those of
Lewis et al. [3].

II. SCALAR FORMULATION

Consider an induction coil which excites eddy currents in a
half-space conductor containing a surface crack, as shown in
Fig. 1. The problem is one of determining the electromagnetic
field distribution and the change in the coil impedance due
to the presence of this defect. An integral equation for the
field at the crack is described in this section, in which the
excitation frequency and hence the skin depth is arbitrary.
A similar integral equation to the one used here has been
discussed in earlier work, based on a magnetic vector potential
representation of the field [4]. In the present study, essentially
the same equation is applied in a formulation that involves a
scalar decomposition of the field. Numerical solutions could
be found for arbitrary frequencies, but our aim is to take
the analysis further using thin-skin approximations. This is
achieved by formulating the problem in terms of a potential
which obeys a surface Laplace equation on the crack. The
integral equation is then used to provide a thin-skin boundary
condition on the solution at the crack mouth.

A. Surface Potential

In this calculation it is assumed that the material properties
are linear and that the displacement current is negligible. It is
also assumed that the crack has a small opening, but initially
the opening will be neglected as we consider a crack defined
on an open surface acting as an impenetrable barrier to the
flow of current. For this idealized crack, the condition

(1)

applies at each and every point on the crack surface
The electromagnetic field in the conductor, varying as the

real part of is calculated via decomposition into
transverse electric (TE) and transverse magnetic (TM) com-
ponents [5] and defined with respect to a preferred direction
normal to the surface of the crack

(2)

(3)

where is a unit vector in the preferred
direction normal to the crack plane, is the TE potential,
and is the TM potential. As discussed in [6], the transverse
electric field does not interact directly with an ideal crack
which means that the scattering process can be described
in terms of the transverse magnetic scalar potential alone.
Applying (1) and (2) gives

(4)

where is the Laplacian operator transverse toNote that
satisfies the surface Laplace equation regardless of the

frequency or skin depth.
The boundary condition on which is to be applied at

the mouth of the crack in the thin-skin limit is determined
from an integral equation applicable at arbitrary frequency.
The derivation of this integral equation is given in [4] in terms
of a vector potential formulation, with interpretation in terms
of the TM potential given in [6]. It is found that

(5)

where is an equivalent current dipole density at the crack
[4], [7] and (i) denotes the incident, or unperturbed, field.
The Green’s function for the TM potential in a half-space
conductor is derived in [6] and is given by

(6)

where is the image point and

(7)

where and

B. Magnetic Field

In addition to the TM potential, the calculation of probe
impedance change due to an open crack requires the value of
the total magnetic field at the crack mouth. In particular, the
component parallel to the line of the crack mouth is needed.
We approximate the field in this region by the magnetic field
at the mouth of a closed crack. This can be expressed as the
sum of the field incident from the coil and an integral form
of that scattered by the defect

(8)

This relationship is found from the corresponding integral
equation for the electric field [7]. The half-space Green’s
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function is given by

(9)

where is the image point and

(10)

III. T HIN-SKIN LIMIT

A. TM Potential

As stated in (4), obeys a 2-D Laplace equation defined
on the open surface of the crack. In order to obtain a solution
of this equation, boundary conditions at the crack edge and
mouth are required. It is possible to proceed analytically if
the frequency range is restricted so that thin-skin conditions
apply. At the crack edge, the component of the magnetic field
normal to the edge is zero in the thin-skin regime [8]. From
this we deduce that

(11)

where denotes the coordinate of a point at the crack edge
and is an outward unit normal in the plane of the crack
perpendicular to the edge. Equation (11) is satisfied by the
TM component of the magnetic field [see (3)] by putting
equal to a constant at the edge. Hence, setting the arbitrary
constant to zero, the edge boundary condition is written

(12)

where, for notational convenience,
We will now use (5) to obtain a thin-skin boundary condi-

tion applicable at the crack mouth. The-component of the
transverse magnetic field at the crack mouth is expressed as

(13)

where denotes the coordinate of a point at the crack mouth.
The superscripts and denote the incident field due to
an eddy-current probe and the field scattered by the defect,
respectively. In Auld’s theory for nonmagnetic conductors [1],

is neglected in establishing an approximate mouth
boundary condition. Here, in contrast, the scattered field at the
mouth and its dependence on are considered.

The required boundary condition is derived from (5) by first
eliminating the dipole density from the equation. In order
to approximate in the thin-skin limit, note that the effective
linear range of the integral operator in (5) is no more than
a few skin depths. In the thin-skin regime, the effect of the
integral operator becomes highly localized such that, at points

away from the crack boundary, the kernel can be approximated
by a delta function [4]. Hence, using (5), it can be shown that

(14)

Numerical tests have demonstrated that this relationship is a
reasonable approximation at the crack mouth [4]. In the thin-
skin limit it is exact at points sufficiently far from the crack
perimeter.

Differentiating (5) with respect to using (14) and restrict-
ing to gives

(15)

where is the crack length. The integration with respect to
has been carried out assuming that varies slowly
with and is therefore roughly constant over the effective
range of the kernel in the-direction. Equations (15) and (13)
are equivalent. It is now possible to solve the surface Laplace
equation for by applying (12) and (15) at the crack edge
and mouth, respectively.

The function can be represented algebraically in
terms of its Fourier transform in the-direction. Using the
definition

(16)

it can be seen from (17) that

(17)

where The integral in (17) can be evaluated
by splitting the integrand using partial fractions and using the
standard form

(18)

This gives

(19)

where
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B. Magnetic Field

The thin-skin relation between and given in (14) can
also be used with (8) to give at the crack mouth, which
is required in the calculation of probe impedance change due
to open cracks

(20)

Again, the integration with respect to has been carried
out by assuming that varies slowly with and
is therefore roughly constant over the effective range of the
kernel in the -direction.

The kernel in the integral of (20) can be treated similarly
to in (15), to obtain an algebraic representation in terms of
its Fourier transform in

(21)

From (10) we have, putting

(22)

which can be integrated to give

(23)

Simplified limiting forms of and have been discussed
elsewhere [6].

IV. PROBE IMPEDANCE

An eddy-current coil placed near the surface of a conductor
has a certain value of impedance. If a crack appears in the
conductor, then the value of the coil impedance changes and
this change, denoted is the impedance change in the probe
due to the flaw. As shown in [6], the impedance change in the
thin-skin regime can be expressed in terms of one-dimensional
(1-D) integrals along the line of the crack mouth by using
the reciprocity theorem and the surface impedance boundary
condition. The impedance change is expressed as

(24)

where

(25)

Fig. 2. Dimensions of a rectangular surface slot.

and

(26)

In (25) and (26), is the distance between the crack faces (the
gape), is the crack length, and is the relative permeability
of material filling the crack. The dimensions of a rectangular
slot are shown in Fig. 2. The subscriptin indicates
that the component of tangential to the line of the crack
edge is required. represents the impedance change due to
the presence of the crack volume, faces, and base, and
represents the impedance change due to the loss of conductor
surface on introduction of the crack. It is assumed that the
gape of the defect is uniform over its entire depth, and it can
be clearly seen that the loss of surface term is balanced
by the second term in which represents the effect of the
defect base. These contributions are of opposite sign since one
represents loss of conductor surface and the other represents
introduction of surface. The first term in consists of a
contribution of order and is related to the crack volume.
The contribution of order represents the impedance change
due to the presence of the crack faces. As described in [6], it
is possible to calculate, approximately, contributions to of
order These will not be considered here, however, since
in practice the contribution to from terms of this order
is typically only about 5% even for defects only 3deep.

For a coil whose axis is normal to the conductor surface,
the incident magnetic field required in the integrands of (25)
and (26) can be calculated using closed-form expressions [9].

and are calculated as described in the previous section
and is determined from

V. EXAMPLE SOLUTION

Consider a rectangular crack of lengthand depth whose
normal is in the positive direction. The TM potential required
in the evaluation of (25) is written as the following solution
of the 2-D Laplace equation:

(27)
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TABLE I
COIL PARAMETERS

Equation (27) vanishes for with and
for with as required. Note that

(28)

The expansion coefficients are determined by substituting
(28) into (15), multiplying by , and
integrating from to This gives

(29)

where the expansion coefficients are defined
such that

(30)

and matrix elements have been introduced defined by

(31)

The evaluation of the matrix elements is carried out using the
Fourier representation

(32)

where is given by (19). Substituting (32) into (31) gives

(33)

where is given by

(34)

It is now a straightforward matter to calculate the value of
from (27) by solving the matrix (29) for the coefficients

TABLE II
MATERIAL AND DEFECT PARAMETERS FOR

RECTANGULAR SLOTS IN ALUMINUM AND MILD STEEL

According to (26), the -component of the magnetic field
at the crack mouth is also required in the calculation of
probe impedance change due to an open crack. Expressing
the surface field as the following expansion:

(35)

the coefficients can be found using (20). Making the
thin-skin approximation1

(36)

(30) can be substituted into (20) for Also substituting
(35) and (27) into (20), multiplying by
and integrating from to gives

(37)

where, in parallel with (31)

(38)

Finally, as in the above analysis for we can write

(39)

where is given by (34) and is given in (23). The
value of required for evaluation of (26) is now given
by (35) with (37) and (39).

The probe impedance change can now be evaluated by
approximating in (25) and (26) by [see relation
(36)] and using the series expansion given in (30). Since

is also represented as a series expansion in (27),
orthogonality then reduces the integrals of (25) and (26) to
sums of products of the coefficients occurring in the series.

1It can be shown that

~~H
(i)
yTM(u; v; z) =

k2

k2 � u2
~~H
(i)
y (u; v; z)

where ~~H
(i)
yTM(u; v; z) is the 2-D Fourier transform ofH(i)

yTM(x; y; z): In
the thin-skin limit, the spatial frequencyu is typically much smaller thank:
Puttingu2 � k2 in the above gives (36).
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Fig. 3. The real part of the impedance change in coil C7 as it is scanned along the mouth of rectangular slot 1 (aluminum).

Fig. 4. The imaginary part of the impedance change in coil C7 as it is scanned along the mouth of rectangular slot 1 (aluminum).

VI. PREDICTIONS AND EXPERIMENTAL DATA

In Figs. 3–8, predictions of the change in coil impedance are
compared with experimental data for coils scanned along the
mouths of rectangular slots in aluminum and mild steel. While
practical eddy-current inspections search for fatigue cracks,
it is valuable to perform controlled experiments using well-
characterized slots, even though fatigue cracks are typically
subject to additional mechanical stresses. For each slot, the
impedance change is shown at two frequencies. The coil

parameters are given in Table I and the material and defect
parameters are given in Table II.

Two sets of comparisons between theory and experiment are
presented for slots in aluminum in order to test the theory for
different ratios of coil diameter to slot length. In Figs. 3 and
4, the coil diameter is greater than the slot length, whereas
in Figs. 5 and 6, the slot length is about twice the diameter
of the coil. The predictions well reflect the shapes described
by the data points in both of these cases. The magnitude
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Fig. 5. The real part of the impedance change in coil C7 as it is scanned along the mouth of rectangular slot 2 (aluminum).

Fig. 6. The imaginary part of the impedance change in coil C7 as it is scanned along the mouth of rectangular slot 2 (aluminum).

of the imaginary part of the impedance predictions matches
extremely well with the experimental data for both frequencies
shown here (and down to frequencies where the defect is only
about three skin depths deep). The real part matches well
for the higher frequency shown, but not so well at the lower
frequency where the thin-skin theory is starting to break down.
However, the error in is only about 5% even for slots
three skin-depths deep.

In Figs. 7 and 8, theoretical predictions of coil impedance
change are compared with experimental data for a slot in mild

steel. Again, the predictions well reflect the shape described
by the data points. Predictions of and experimental data
agree to within 15% for both frequencies shown. The larger
error observed between predictions and experiment in the case
of mild steel is likely to be a consequence of the magnetic
nature of the steel. First, the relative permeability is measured
in a region of the plate, well away from the defect, whereas
the eddy currents at the crack faces flow in a region in which

is likely to differ from the bulk value as a result of surface
changes brought about in the manufacture of the slot. Second,
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Fig. 7. The real part of the impedance change in coil C9 as it is scanned along the mouth of rectangular slot 3 (mild steel).

Fig. 8. The imaginary part of the impedance change in coil C9 as it is scanned along the mouth of rectangular slot 3 (mild steel).

it is possible that such surface changes give rise to a larger
“effective” defect volume, which leads to impedance changes
larger than those predicted.

VII. CONCLUSION

A number of general-purpose numerical methods are
available for predicting the probe signals encountered in
eddy-current nondestructive evaluation. These include finite-
element, boundary-element, finite-difference, and volume-
element schemes. All of these approaches can be particularly

time consuming if the skin depth of the induced current is
small compared with the crack size. The reason for this is
simply that general numerical schemes typically rely on a grid
of cells or a nodal mesh with a density that can be adjusted
to suit the length scale of the characteristic field variations.
In a high-frequency eddy-current problem, where the skin
depth is small compared with the defect size, the number of
cells or nodes may have to be extremely large in order to
represent the field properly. As a result, computation times
can become very large and results may be unreliable. In this



BOWLER AND HARFIELD: THIN-SKIN EDDY-CURRENT INTERACTION 523

work, the thin-skin electromagnetic fields at the crack are
described in terms of solutions of the 2-D Laplace equation.
This approach overcomes the resolution difficulties inherent in
the schemes mentioned above and is computationally efficient,
taking only a few seconds on a personal computer for a
typical calculation. The theory is valid for both magnetic
and nonmagnetic materials and very good agreement between
predictions and experimental data is shown for rectangular
slots in aluminum and steel.
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