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Eddy-current non-destructive evaluation is commonly performed at relatively high frequencies at
which the skin depths are significantly smaller than the dimensions of a typical crack. A thin-skin
analysis of eddy currents is presented in which the electromagnetic fields on the crack faces are
described in terms of a potential which obeys a two-dimensional Laplace equation. Solutions of this
equation for defects in both magnetic and non-magnetic materials are determined by applying
thin-skin boundary conditions at the crack perimeter. The impedance change of an eddy-current coil
due to the defect is then calculated by numerical evaluation of one-dimensional integrals over the
line of the crack mouth, the impedance integrals having been derived with the aid of a reciprocity
relationship. Theoretical predictions are compared with experimental data for long, uniformly deep
slots in aluminium and mild steel and good agreement between theory and experiment is obtained.
© 1997 American Institute of Physics.@S0021-8979~97!06920-X#
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I. INTRODUCTION

In eddy-current non-destructive evaluation~NDE!, the
presence of a defect in a metal component is indicated b
change in the impedance of a probe. The change in pr
impedance due to the interaction between eddy currents
the flaw can be predicted theoretically from the electrom
netic field. Here, the field at a crack due to a time-harmo
excitation by an induction coil is calculated in terms of
single scalar potential which obeys a two-dimensio
Laplace equation in a domain corresponding to the cr
surface. A solution is found by applying suitable bounda
conditions and the coil impedance change due to the crac
calculated from the potential.

Although the surface potential used in the present f
mulation satisfies the Laplace equation at an arbitrary
quency, the boundary conditions used to determine the s
tion are restricted to the thin-skin regime. In this regime,
skin depth,d, given by

d5S 2

vm0m rs
D 1/2

, ~1!

is substantially smaller than the depth and length of
crack. It is estimated that reasonably accurate predictions
be made with the restricted boundary conditions provided
crack depth and length are greater than approximately t
skin depths. Crack inspection that conforms to this condit
is very common in practice because the probe sensitivit
likely to decrease as the frequency is lowered. A theoret
model valid in the thin-skin regime is therefore widely a
plicable both to the evaluation of crack signals in ferroma
netic steels and to high-frequency testing of non-magn
materials.

The permeability of the material has a strong influen
on the impedance change of the coil. This is clearly dem
strated in Figure 1, where predictions of coil impedan
change as a function of frequency are shown for a coil c
tred over two identical long slots, one in a non-magnetic t

a!Electronic mail: n.harfield@surrey.ac.uk
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piece and the other in a test piece of relative permeab
100. These results indicate that the response from crack
ferromagnetic materials differs in magnitude and frequen
variation from that of cracks in non-ferromagnetic materi
of similar conductivity.

Previously, a number of approaches have been take
solving for the electromagnetic field at the crack in the th
skin regime. These developments include the work of A
et al.,1 who considered cracks in aluminium alloys, an
Lewis et al.2 who were mainly concerned with flaws in fe
romagnetic steels. A common feature of these studies is
use of the two-dimensional Laplace equation. Their disti
tive theoretical aspects stem from the boundary conditi
that are applied in obtaining the solution. The calculatio
for cracks in aluminium were performed using Auld
approximation,1,3 in which it is assumed that the extern
magnetic field tangential to the conductor surface is und
turbed by the crack. The approximation is reasonable p
vided that the ratio of the coil diameter to the crack depth
not too small, but this limitation leaves room for improv
ments in the predictions. In magnetic materials, the field
the vicinity of a crack is markedly different to that in alu
minium since the magnetic field tangential to and at the s
face of the conductor is perturbed significantly. The p
turbed magnetic field at the crack mouth has been taken
account by Lewiset al.2,4 by deriving a boundary condition
using a flux conservation argument applied to a reg
around the opening. The resulting theory is applicable
materials of arbitrary relative permeability.

In an earlier analysis of the field at cracks in magne
materials by Collinset al.5 attention was focused on the lin
boundary between the conductor surface and the crack f
At this boundary, referred to as the fold line, the norm
component of the current and the normal magnetic flux
deemed to be continuous. This implies that a complex po
tial representing the field in the surface plane and on
crack face is analytically continuous at the fold line. Cons
quently, the problem domain consists of a half plane rep
senting half of the conductor surface adjoining one cra
face unfolded into a common plane. A solution in this d
7/82(9)/4590/14/$10.00 © 1997 American Institute of Physics
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main corresponds to a surface potential that can be measu
directly using contacting electrodes. The continuity conditio
is likely to be accurate for cracks of finite gape in materia
of high permeability but the implication of later work is tha
the approach represents the high permeability limit of a mo
general theory.2

In the present study, the required boundary condition
the crack mouth is determined as a limiting case of an e
pression valid at arbitrary frequency and permeability. In o
der to improve on Auld’s approximation, the perturbation o
the surface magnetic field by the crack is taken into accou
The resulting expressions are comparable with, but differ
detail from, those of Ref. 4.

In the thin-skin regime, calculations can be ordered
terms of the small parameter 1/ik, where k is a complex
wave number given by

k5
11 i

d
. ~2!

In particular, it is found that the coil impedance change,DZ,
due to a flaw can be expressed as the following power ser

DZ5ZsFc22S 1

ik D 22

1c21S 1

ik D 21

1c0S 1

ik D 0

1...G , ~3!

where Zs is a real normalising factor and theci are real
coefficients. For cracks whose dimensions are an order
magnitude or more greater thand, only the first two terms in
Eq. ~3! are required to representDZ to a reasonable accu-
racy. The second and third terms of the above series
given by Kahn et al.6 for the two-dimensional thin-skin
problem of eddy-current interaction with a long crack of un
form depth and negligible opening. The first term in th
above series, a purely imaginary term, is missing from t
Kahn expression for impedance because it represents the
fect of crack opening which was not originally considered b
Kahn et al.6 The imaginary term is associated with the ele
tromagnetic energy stored in the crack volume. The seco

FIG. 1. Predicted impedance change for two identical long slots, one i
non-magnetic material and one in a material withm r5100. Apart from the
value ofm r , the parameters used in these predictions are given in the
column of Table I.
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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term is a surface effect and the third, purely resistive term, i
due to the special behavior of the field at the crack mout
and edge. Auld refers to the edge and mouth impedance co
tributions as the Kahn terms. An improved analysis of thes
contributions has been given by Harfield and Bowler.7

In three-dimensional problems, it is not necessarily de
sirable to restrict the solution in such a way that the coeffi
cients in the impedance expression are real. This is becaus
precise adherence to a strictly ordered expansion makes t
analysis somewhat cumbersome. For example, in defining a
unperturbed field, it is preferable to use the exact integra
expressions available from the work of Dodd and Deeds8

rather than a more awkward power series decomposition
the expressions.

In the present study of the three-dimensional thin-skin
crack problem, the impedance contributions corresponding
the terms of Eq.~3! are derived for an arbitrary crack shape.
Impedance predictions are then compared with experimen
on long slots of uniform depth. For cracks whose depths ar
only a few times greater thand, the third term in Eq.~3! is
significant and, since it is related to the non-thin-skin behav
ior of the fields near the crack perimeter, it has a larger effec
as the skin depth is increased. The term has previously be
evaluated approximately by Auld9 by weighting two-
dimensional solutions for a long crack in a uniform incident
field6,7 with the locally varying component of the magnetic
field directed tangential to the crack perimeter. We discus
this term and propose a new approximate expression whic
conforms with reciprocity principles. Note that even for de-
fects of depth 3d, however, the contribution touDZu from the
third term in Eq.~3! is typically only about 5%.

II. SYMMETRY CONSIDERATIONS

Consider a coil whose axis is offset from the crack
plane,x50, as shown in Figure 2. For such cases, the solu
tion can be found as the averaged sum of solutions for th
odd and even configurations shown in Figure 3. In thes
configurations, an image coil mirrors the real coil in the
crack plane. In the even configuration, Figure 3~a!, the cur-
rent flows in the same sense in each coil giving rise to a

a

st

FIG. 2. Plan schematic view of an eddy-current inspection.
4591N. Harfield and J. R. Bowler
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electric field whosex component is even with respect to th
x coordinate. In the odd configuration, the current in th
image coil flows in the opposite sense to that in the real c
and thex component of the unperturbed electric field, th
component normal to the crack plane, is odd inx.

An open narrow crack in a metal having a permeabili
greater than that of free space acts as barrier to the flow
current and a partial barrier to the magnetic flux. In the ev
system of Figure 3~a!, the electromagnetic field can be
viewed as interacting with the crack mainly through the ele
tric field, since the component of the unperturbed magne
field normal to the defect plane is zero. In the odd system
Figure 3~b!, the converse is true; the electromagnetic fie
interaction can be viewed as magnetic since the compon
of the unperturbed electric field normal to the defect plane
zero.

For cracks in non-magnetic materials, and for crac
with a small opening in magnetic materials, the magne
interaction is negligible. In these cases the problem can
solved purely in terms of the even configuration of Figu
3~a!, which describes the flow of induced current around th
defect. For a coil whose axis is centred over the defect,
problem can also be solved in terms of the even configu
tion since, by symmetry, the component of the magnetic fie
perpendicular to the defect plane is zero. If, however, there
a significant air gap between the faces of a crack in a ma
netic material, and the coil axis is offset from the crac
plane, then there may be a substantial magnetic interact
This interaction is strengthened if the ratio of the materi
permeability to that of the defect is increased or if the size
the defect gape is increased, but, in most cases, its effec
still small when compared with the effect of the electric fiel

FIG. 3. The averaged sum of solutions for~a! odd and~b! even configura-
tions gives the solution for a coil whose axis is offset from the plan
of the crack.
4592 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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perturbation. Since the magnetic field perturbation is sign
cant only for coils offset from defects of substantial gape
highly permeable materials, we proceed to solve the prob
in terms of the even configuration of Figure 3~a! alone, in
which the electric interaction dominates.

III. SCALAR FORMULATION

A. Surface potential

Consider the planar crack in a conductor whose surf
is in the planez50, Figure 4. It is assumed that the electr
magnetic field varies as the real part of exp(2ivt), that the
material properties are linear, that the displacement curre
negligible and that the conductor is sufficiently thick to b
have as a half space. For the purpose of calculating the fi
it is also assumed that the crack is ideal in that it ha
negligible opening but forms a perfect barrier to the flow
current. The calculation of the impedance change due to
defect presented in Section IV does, however, allow for
possibility of finite gape.

The field calculation proceeds by decomposing the e
tric and magnetic fields in the conductor,z,0, into trans-
verse electric ~TE! and transverse magnetic~TM!
components:10

E~r !5 ivm0m r@¹3 x̂c8~r !2¹3¹3 x̂c9~r !#, z,0,
~4!

H~r !5¹3¹3 x̂c8~r !2k2¹3 x̂c9~r !, z,0, ~5!

where the preferred direction,x̂, is normal to the crack plane
c8 is the TE potential,c9 is the TM potential andk2

5 ivm rm0s. By substituting Eqs.~4! and ~5! into the elec-
tromagnetic field equations, it can be shown that the TE
TM potentials satisfy10

~¹21k2!¹x
2c8~r !50, ~6!

~¹21k2!¹x
2c9~r !50, ~7!

where¹x5¹2 x̂]/]x is the transverse gradient with respe
to the x direction. Although the potentials are not couple
through their governing equations, they are related thro
the interface conditions at the surface of the conductor. T
interdependence is expressed in terms of 232 matrices of

FIG. 4. A surface crack in a conducting half space.
N. Harfield and J. R. Bowler
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reflection coefficients and transmission coefficients, given
the Appendix, which account for the fact that a TM fie
incident on the interface reflects and transmits both TE
TM modes, the same being true of an incident TE mode

In a half-space problem formulated using Hertz pote
tials, it is usual to choose the preferred direction as the n
mal to the interface. By following this standard formulatio
the coupling between potentials through the interface co
tions is avoided. Although the present choice of prefer
direction leads to coupled interface conditions, the cho
modes are decoupled at the crack surface. In fact, the
mode does not interact directly with an ideal crack at
Instead, it is perturbed indirectly via its link with the TM
mode at the surface of the conductor. Because direct
interaction with the crack is absent, the TE potential and
gradients are continuous at the crack plane. In contrast,
TM potential is subject to a direct crack-field interaction a
therefore has a discontinuity at the crack.

In order to examine the discontinuity of the TM Her
potential, the properties of the electromagnetic field at
crack are reviewed.11 Firstly, it is noted that the tangentia
magnetic field is continuous at an ideal crack, a condit
that can be written as

Ht~r1!2Ht~r2!50, ~8!

where the6 subscripts refer to limiting values of the coo
dinate as the crack plane is approached from one side o
other and the subscriptt denotes components tangential
the crack. In the absence of direct TE interaction, the m
netic field continuity condition applies to the TM contribu
tion alone and implies that

c9~r1!2c9~r2!50. ~9!

Thus the TM potential itself is continuous at the crack s
faceSc .

The tangential electric field has a discontinuity at t
crack which can be expressed as the gradient of a sc
function,11 a relationship that is written

Et~r1!2Et~r2!52
1

s
¹ tp~r !, rPSc , ~10!

wherep(r ) is the equivalent source density of the crack re
resented by a layer of electric current dipoles orientated n
mal to the crack surfaceSc . Since the jump in the electric
field is solely due to the TM mode, it can be seen from
form of the TM contribution in Eq.~4! that

]c9

]x U
r1

2
]c9

]x U
r2

5
1

k2 p~r !, rPSc . ~11!

Hence the TM potential has a discontinuity in its norm
gradient at the crack surfaceSc .

Assuming that the crack is impenetrable to eddy c
rents, then the normal component of current at the cr
surface is zero. For a crack in theyz plane, this leads to the
condition

E~r !• x̂50, rPSc . ~12!

Applying Eq. ~12! to Eq. ~4! shows that
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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¹x
2c9~r !50, rPSc , ~13!

where¹x
2 is the Laplacian operator transverse tox. Note that

Eq. ~13! shows thatc9(r ) satisfies the surface Laplace equ
tion regardless of the frequency.

Having established the general behavior of the potent
at the crack surface, an integral equation will be given wh
determinesc9(r ) at an arbitrary frequency. Although it i
possible to use this equation as the basis for computing
merical solutions, it will be used here for the more limite
purpose of defining a crack mouth boundary condition
order that the Laplace equation, Eq.~13!, can be solved. For
notational convenience write

c52k2c9. ~14!

Then, in the presence of an ideal crack,c satisfies

c~r !5c~ i !~r !1E
Sc

G~r ,r 8!p~r 8!dS8, rPSc , ~15!

where the superscript (i ) denotes the incident, or unpe
turbed, field. The Green’s function for the TM potential in
half-space conductor, derived in the Appendix asG22(r ,r 8),
is given by

G~r ,r 8!5
eikur2r8u

4pur2r 8u
1

eikur2r9u

4pur2r 9u
1

1

k2

]2

]y2

3U~x2x8,y2y8,z1z8!, ~16!

wherer 95r 822ẑz8 is the image point and

U~x,y,z!5
m rk

4

~2p!2 E
2`

` E
2`

` 1

u22k2 S 1

k
2

m r

g D
3

1

@~m r
221!k21k2#

e2gz1 iux1 ivydudv,

~17!

whereg5(u21v22k2)1/2 andk5(u21v2)1/2.
Equation~15! could presumably be derived with the a

of Green’s second theorem applied to a surface surroun
the crack. However, there are major complications involv
in such a derivation because the crack intersects the sur
of the conductor where the scalar fields are coupled. Inst
of attempting a first principles derivation, our justification f
using Eq.~15! relies on an equivalence between the pres
scalar representation of the field and a vector potential
mulation given previously.12 The connection is made by no
ing that thex component of the current density due to t
perturbed field at a crack face is equal and opposite to
unperturbed current density. Writing this as

¹x
2c~s!~r !5Jx

~ i !~r !, rPSc , ~18!

where the superscript (s) denotes the perturbed field, an
noting the correspondence with Eq.~17! of Ref. 12, allows
an identification of an integral expression forc (s)(r ) from
which Eq.~15! follows.
4593N. Harfield and J. R. Bowler
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B. Boundary conditions

While c satisfies the surface Laplace equation given
Eq. ~13! at arbitrary frequency, the boundary conditions
the crack edge and mouth given in this section are valid o
in the thin-skin limit. In the thin-skin regime, the compone
of the magnetic flux density normal to the crack edge
zero.4 From this we deduce that

HTM~re!•n̂50, ~19!

wherere denotes the coordinate of a point at the crack e
and n̂ is a unit vector pointing outward from the crack ed
and lying in the crack plane. Noting that

HTM~r !5¹3 x̂c, ~20!

and applying Eq.~19! to Eq. ~20! shows that on the crac
edge

c~re!50, ~21!

where an arbitrary integration constant has been set to z
At the crack mouth, a boundary condition is appli

which is derived from the magnetic field transverse to
surface of the conductor. In general they component of this
field can be expressed as

HyTM~rm!5HyTM
~ i ! ~rm!1HyTM

~s! ~rm!, ~22!

where rm denotes the coordinate of a point at the cra
mouth. In dealing with cracks in non-magnetic materia
Auld1,9 neglects the termHyTM

(s) (rm) which implies that the
perturbation of they component of the magnetic field due
the crack is negligible at the crack mouth. By retaining t
effect of the scattered magnetic field in the boundary con
tion, it is found that an additional impedance contributi
arises which is in fact of higher order than that of the Ka
terms. In the case of magnetic materials, the effect of
scattered magnetic field on the mouth boundary conditio
somewhat larger than for non-magnetic material and th
fore cannot be ignored.

In the thin-skin regime the kernel of Eq.~15! is highly
localised such that in the limit its effect can be represen
by a delta function.12 The localization of the kernel has bee
used to show that

p~r !'22ikc~r !, ~23!

in the thin-skin limit.12 Although the functional form ofp(r )
and c~r ! are different at the mouth of the crack, Eq.~23!
approximates the magnitude of the dipole density in that
gion.

Differentiating Eq.~15! with respect toz, using Eq.~23!
and restrictingr to rm gives

]c~r !

]z U
r5rm

5
]c~ i !~r !

]z U
r5rm

1
2

ik E
2c/2

c/2 ]2

]y2

3U~0,y2y8,0!c~0,y8,0!dy8, ~24!

wherec is the crack length. The integration with respect
z8 has been carried out by assuming thatc(0,y8,z8) varies
slowly with z8 and is therefore roughly constant over t
effective range of the kernel in thez direction. Equation~24!
is the thin-skin equivalent of Eq.~22!.
4594 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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To summarize, the TM potential at the crack surface h
been shown to satisfy a two-dimensional Laplace equat
Eq. ~13!, regardless of the frequency or skin depth. Th
equation will be solved by applying boundary conditions
the crack edge and mouth, Eqs.~21! and ~24!, respectively,
which are valid for small skin depths.

C. Magnetic field

In order to evaluate the impedance due to an open cr
the total magnetic field at the crack mouth in the plane of
surface of the conductor is required. The field in this reg
is approximated by the magnetic field at the line of the cra
mouth for a closed crack. The magnetic field can be writ
as a sum of the field incident from the coil and an integ
form of that scattered by the defect:

Hy~r !5Hy
~ i !~r !1E

Sc

g~r ,r 8!p~r 8!dS8, rPSc , ~25!

wherep is an equivalent current dipole density at the cra
This relationship is found from the corresponding integ
equation for the electric field.11 The half-space Green’ func
tion is given by

g~r ,r 8!5
]

]z
F eikur2r8u

4pur2r 8u
1

eikur2r9u

4pur2r 9u
2

1

k2

]2

]y2

3 V~x2x8,y2y8,z1z8!G , ~26!

wherer 95r 822ẑz8 is the image point and

V~x,y,z!5
1

k2 ¹x
2U~x,y,z!

5
m rk

2

~2p!2 E
2`

` E
2`

` S 1

k
2

m r

g D
3

1

@~m r
221!k21k2#

e2gz1 iux1 ivydudv.

~27!

Using the thin-skin relation betweenp and c given in Eq.
~23! it is found from Eq.~25! that

Hy~rm!5Hy
~ i !~rm!2

2

ik E
2c/2

c/2 ]2

]y2

3 V~0,y2y8,0!c~0,y8,0!dy8, ~28!

where rm denotes the coordinate of a point at the cra
mouth andc is the crack length. Again, the integration wit
respect to z8 has been carried out by assuming th
c9(0,y8,z8) varies slowly withz8 and is therefore roughly
constant over the effective range of the kernel in thez direc-
tion.

D. Fourier representation

The kernelU in the integral of Eq.~24! can be repre-
sented in terms of its Fourier transform iny:
N. Harfield and J. R. Bowler
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Ũ~x,v,z!5E
2`

`

U~x,y,z!e2 ivydy. ~29!

From Eq.~17! we then have, puttingŨ(v)5Ũ(0,v,0),

Ũ~v !5
m rk

4

2p E
2`

` 1

u22k2 S 1

k
2

m r

g D
3

1

@~m r
221!k21k2#

du. ~30!

The integral of Eq.~30! can be evaluated by splitting th
integrand using partial fractions and then using the stand
form

F~a,b!5E
2`

` du

~u22a2!Au21~b22a2!

5
1

ab
lnS a2b

a1b D . ~31!

The resulting expression forŨ(v) is

Ũ~v !5
m r

2p@~m r
221!w21m r

2# H m r

w
lnS 11w

12wD
2

1

A11w2
lnS 11A11w2

12A11w2D
1

m r
221

A~m r
221!w211

F lnS A~m r
221!w2111m r

A~m r
221!w2112m r

D
2 lnS A~m r

221!w21111

A~m r
221!w21121

D G J , ~32!

wherew5v/k. Equation~32! is valid for all m r . For highly
permeable materials, the last two terms in Eq.~32! dominate
and Ũ(v) may be approximated by13

Ũ~v !mr@1'2
m r

2pAz211
lnS 11Az211

12Az211
D , ~33!

wherez5m rv/k. For non-permeable materials, the last tw
terms in Eq.~32! vanish and

Ũ~v !mr515
1

2p F 1

w
lnS 11w

12wD
2

1

A11w2
lnS 11A11w2

12A11w2D G . ~34!

This term, used in Eq.~24!, provides a correction to Auld’s
theory in which the scattered tangential magnetic field at
conductor surface is assumed to be zero.1,3,9

In a similar manner, the kernelV in the integral of Eq.
~28! can be represented algebraically in terms of its Fou
transform iny:

Ṽ~x,v,z!5E
2`

`

V~x,y,z!e2 ivydy. ~35!

From Eq.~27! we have, puttingṼ(v)5Ṽ(0,v,0),
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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Ṽ~v !5
m rk

2

2p E
2`

` S 1

k
2

m r

g D 1

@~m r
221!k21k2#

du, ~36!

which can be integrated to give

Ṽ~v !52
m r

2p F lnS A~m r
221!w2111m r

A~m r
221!w2112m r

D
2

1

A~m r
221!w211

lnS A~m r
221!w21111

A~m r
221!w21121

D G .

~37!

Equation~37! is valid for all m r . For highly permeable ma
terials, Eq.~37! can be approximated by

Ṽ~v !mr@1'
m r

2pAz211
lnS 11Az211

12Az211
D . ~38!

Note that this term is equal and opposite to the high perm
ability form of Ũ(v) given in Eq.~33!. For m r51, the inte-
gral of Eq.~36! can be evaluated using the standard form

E du

Au21a2
5 ln~u1Au21a2!, ~39!

giving,

Ṽ~v !mr5152
1

p
lnS w

Aw221
D . ~40!

Equations~37!–~40! are used in Eq.~28! to evaluate the
surface magnetic field as required for the calculation
probe impedance.

IV. PROBE IMPEDANCE

Define the impedance change in a coil due to a defec

DZ5Z2Z0 , ~41!

whereZ is the impedance of the coil in the presence of t
flawed conductor andZ0 is the coil impedance in the pres
ence of a similar but unflawed conductor. The impedan
change can be written as the following integral over the c
region:

DZ52E
V

@E2E~ i !#•JdV ~42!

for unit coil current. Equation~42! is transformed to a sur
face integral by noting that

~¹3¹32k2!E5 ivmJ, ~43!

~¹3¹32k2!E~ i !5 ivmJ, ~44!

and puttinga5E( i ) andb5E/ ivm in the identity

E @b•¹3¹3a2a•¹3¹3b#dV

5E @a3~¹3b!2b3~¹3a!#•dS. ~45!
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DZ52E
S
@E~ i !3H2E3H~ i !#•n̂dS, ~46!

where n̂ is an outward pointing unit vector normal to th
surfaceS which encloses the coil. In order to calculateDZ,
Eq. ~46! is transformed so that the impedance is expresse
terms of quantities which are either known or are easily
rived from the surface potential. This is accomplished
eliminating the perturbed and unperturbed electric fields
follows. Choose the surfaceS so that it coincides with the
conductor surface and then split the integral of Eq.~46! into
two parts, an integral over the crack mouth,Sm , and an
integral over the unflawed conductor surface,S2Sm :

DZ5E
Sm

@E~ i !3H2E3H~ i !#• ẑdS

1E
S2Sm

@E~ i !3H2E3H~ i !#• ẑdS. ~47!

The first term in Eq.~47!, written as

ZS5E
Sm

@E~ i !3H#• ẑdS, ~48!

is evaluated first, followed by a strictly thin-skin evaluatio
of the second term in Eq.~47!, denoted

ZF52E
Sm

@E3H~ i !#• ẑdS. ~49!

Finally, the integral overS2Sm is evaluated approximatel
along with terms of the same order in the integral ofE
3H( i ) over Sm . The aim is to find the total impedanc
change due to cracks with finite opening by using field so
tions that have been found for cracks of zero opening. Ine
tably this involves further approximations, particularly
dealing with the smaller terms, but the results show that g
predictions are possible even in the absence of a rigo
solution to the open crack problem.

A. Evaluation of ZS

In the thin-skin regime, a relationship between the tra
verse field components at the conductor surface can be
rived from Maxwell’s equations by assuming that the fie
varies much more rapidly in the direction normal to t
boundary than in the direction tangential to the bounda
This relationship, known as the surface impedance bound
condition, is expressed in terms of the unperturbed field

ẑ3Et
~ i !5

ik

s
Ht

~ i ! , ~50!

where the subscriptt refers to transverse field componen
Using the fact that

Hx~0,y,0!50, ~51!

as required by the symmetry argument of Section II, a
applying Eq.~50! to Eq. ~48! gives
4596 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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ZS5
ika

s E
2c/2

c/2

Hy
~ i !~0,y,0!Hy~0,y,0!dy, ~52!

wherea is the crack gape. Integration with respect tox has
been carried out by assuming that the magnetic field appr
mates a linear function over the width of the crack openi

Physically,ZS describes the impedance change result
from removal of part of the surface of the unflawed condu
tor on introducing the flaw. It can be calculated from a on
dimensional integral along the line of the crack mouth,
given in Eq.~52!. The incident magnetic field required in Eq
~52! can be evaluated, for a coil with axis perpendicular
the conductor surface, using closed-form expressions8 and
they component of the total magnetic field can be calcula
using Eq.~28!. From Eq.~52! it is evident thatZS contributes
to DZ at the order of the second term in Eq.~3! and that the
contribution vanishes as the gape tends to zero.

B. Evaluation of ZF

We will evaluate the integral of Eq.~49! using the sur-
face impedance boundary condition. This leads to contri
tions toDZ of the order of the first two terms in Eq.~3!. The
resulting expression, combined withZS , accurately ex-
pressesDZ at the order of the first two terms in Eq.~3!.

The expression forZF given in Eq.~49! can be written in
terms of field components which are either known or can
calculated by means of the following manipulation. Write

ZF52E
Sm

@H~ i !3 ẑ#•EdS. ~53!

Again assuming thatHx
( i ) andHy

( i ) are linear across the crac
and making use of Eq.~51! allows Eq.~53! to be written

ZF52E
2c/2

c/2

Hy
~ i !~0,y,0!F E

2a/2

a/2

E~x,y,0!•dxGdy. ~54!

Now Ex is, by the definition of Eq.~4!, expressed in terms o
the TM potential alone. This means that

E•dx5ETM•dx ~55!

and

ZF52E
2c/2

c/2

Hy
~ i !~0,y,0!F E

2a/2

a/2

ETM~x,y,0!•dxGdy. ~56!

The line integral in square brackets will now be written
the difference between an integral which completely e

FIG. 5. PathsL0 andLU .
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closes the flaw, following pathL0 , and one which exclude
the mouth region, following pathLU . Using the paths shown
in Figure 5, write

E
2a/2

a/2

ETM•dx5 R
L0

ETM•dl2E
LU

ETM•dl. ~57!

Applying Stokes’s theorem to the integral overL0 and
the surface impedance boundary condition to the inte
over LU gives

E
2a/2

a/2

ETM•dx5 ivm0mcE
ze

0E
2a/2

a/2

HyTM~x,y,z!dxdz

1
2ik

s E
ze

0

HyTM~0,y,z!dz

1
ik

s E
2a/2

a/2

HtTM~x,y,ze!dx, ~58!

wheremc is the relative permeability of the material withi
the defect andHtTM denotes the component ofHTM tangen-
tial to the edge. Assuming that these field components
uniform across the flaw, integration with respect tox gives

E
2a/2

a/2

ETM•dx5
1

s S k2a
mc

m r
12ik D E

ze

0

HyTM~0,y,z!dz

1
ika

s
HtTM~0,y,ze!. ~59!

Writing HyTM5]c/]z and integrating with respect toz gives

E
ze

0

HyTM~0,y,z!dz5c~0,y,0!. ~60!

Expression~56! can finally be written in terms of the follow
ing one-dimensional integrals:

ZF52
1

s S k2a
mc

m r
12ik D E

2c/2

c/2

Hy
~ i !~0,y,0!c~0,y,0!dy

2
ika

s E
2c/2

c/2

Hy
~ i !~0,y,0!HtTM~0,y,ze!dy. ~61!

As for ZS , the incident field from the coil in the integrand o
Eq. ~61! can be calculated, for a coil with axis perpendicu
to the conductor surface, using closed-form expressio8

The potentialc is obtained by solving the Laplace proble
described in Section III andHtTM(0,y,ze) can be found from
the potential. The first term in Eq.~61! clearly contributes to
DZ at the order of both the first and second terms in Eq.~3!.
The part which depends onk2 is a volume-dependent contr
bution which vanishes as the crack gape tends to zero.
part which depends onk is related to current flow over th
faces of the defect—the factor of 2 reflects the presenc
the two crack faces. The second term in Eq.~61! contributes
to DZ at the order of the second term in Eq.~3!. It is related
to the current flowing over the base of the defect and v
ishes as the defect gape tends to zero.
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997

Downloaded 08 May 2004 to 129.186.200.50. Redistribution subject to A
al

re

r
.

he

of

-

C. Evaluation of ZK

For defects whose dimensions are only a few tim
greater thand, the third term in Eq.~3! is significant. Here,
we propose an approximate form for this term which w
denoteZK after Kahnet al.,6 who first evaluated this term in
the context of a long crack in a uniform field. The develo
ment is not strictly rigorous since the resulting expressio
involve field values which are determined using thin-sk
assumptions, such as the relationship betweenp andc of Eq.
~23!.

Kahn-level contributions arise from the integral ofE
3H( i ) over Sm and the integral overS2Sm in Eq. ~47!.
Consider firstly the contribution from the integral overS
2Sm . This integral gives rise to two equal terms, one fro
the surface on each side of the crack. If the surface imp
ance boundary condition is used forE as well asE( i ), the
integral overS2Sm vanishes but the boundary condition
not in fact valid in the region within a few skin depths of th
crack opening. An improved approximation is obtained
adapting a local solution for the corner region of the tw
dimensional long crack problem.7 From this problem it is
evident that thex component of the electric field can b
written as

Ex5
ikHy

s F12kE
x2a/2

`

H0
~1!~ku!duG x>a/2, ~62!

which vanishes forx5a/2, as indeed it should.
Substituting Eqs.~50! and ~62! into the second term in

Eq. ~47!, using Eq.~51! and integrating with respect tox
gives the following contribution toDZ:

2
4

ps E
2c/2

c/2

Hy
~ i !~0,y,0!Hy~0,y,0!dy. ~63!

This Kahn term contributes at the third level in Eq.~3! and
represents the effect of a highly localised corner field at
surface of the conductor close to the crack mouth.
equivalent term arises from the integration over the cra
faces, along with a contribution due to local field variation
the crack edge.

Kahn-level contributions from the integral ofE3H( i )

overSm will now be determined. The development procee
as for ZF up to Eq.~57!. For the integration overLU , the
surface impedance boundary condition is now modified
account for third order effects. The relationship is supp
mented by terms representing the corner field, as in Eq.~62!,
and the edge field, as in Eq.~8! of Ref. 7. Hence for the loca
electric field near the crack mouth,

EzTM5
ikHy

s F12kE
2z

2`

H0
~1!~ku!duG , ~64!

and, approaching the edge of the crack,7
4597N. Harfield and J. R. Bowler
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EzTM5
ikHtTM

s F12erfc~2 iAik~z cosu1d!!

1
i

Ap

eik~z cosu2ze!

Aik~z cosu2ze!
G , ~65!

where ze is the coordinate of the crack edge andu is the
angle between the inwardly directed normal to the cra
edge andẑ. The first terms in Eqs.~64! and ~65! represent
the unmodified surface impedance boundary condition
give rise to the terms of orderk in ZF . The remaining terms
represent the non-Laplacian, locally varying field. Integr
ing overLU now gives rise to the following terms in additio
to those of Eq.~58!:

4

sp
HyTM~0,y,0!2

1

s cosu
HtTM~0,y,ze!. ~66!

Combining the impedance contribution from these ter
with that of Eq.~63! givesZK :

ZK52
4

ps E
2c/2

c/2

Hy
~ i !~0,y,0!Hy~0,y,0!dy

2
4

ps E
2c/2

c/2

Hy
~ i !~0,y,0!HyTM~0,y,0!dy

1
1

s E
2c/2

c/2 1

cosu
Hy

~ i !~0,y,0!HtTM~0,y,ze!dy. ~67!

D. Summary

The change in impedance in an eddy-current coil due
a surface crack is given by

DZ5ZS1ZF1ZK , ~68!

whereZS is given in Eq.~52!, ZF is given in Eq.~61! andZK

is given in Eq.~67!. These expressions involve simple on
dimensional integrals along the line of the crack mouth. T
development ofZS andZF is rigorous and these terms pro

FIG. 6. A conducting half space containing a long, surface-breaking cr
4598 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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vide the full contribution toDZ at the order of the first two
terms in Eq.~3!. The derivation ofZK is not as rigorous but
it provides a good approximation to the third term in Eq.~3!.

V. LONG CRACK

The solution for a long, surface defect of uniform dep
is most readily obtained by Fourier transforming in the
rection of the line followed by the crack. For the purpose
calculating the fields, let the crack occupyx50,2`,y
,`,2d<z<0, as shown in Figure 6, and letc̃(v,z) be the
Fourier transform ofc(y,z) in y. The solution of the Fourier
transform of Eq.~13!, which vanishes atz52d in accor-
dance with Eq.~21!, has the form

c̃~v,z!5A~v !sinh@v~z1d!#. ~69!

The coefficientA(v) is determined from the boundary con
dition at the crack mouth. Fourier transforming Eq.~24!
yields

]c̃~v,z!

]z
U

z50

5H̃yTM
~ i ! ~v,0!2

2v2

ik
Ũ~v !c̃~v,0!, ~70!

whereŨ(v) is given in Eq.~32!, and hence

c̃~v,z!5
sinh@v~z1d!#

v cosh~vd!@112~v/ ik !Ũ~v !tanh~vd!#

3 H̃yTM
~ i ! ~v,0!. ~71!

The effect of includingHyTM
(s) in the boundary condition

given in Eq. ~22! is now clear. It gives rise to the term
2(v/ ik)Ũ(v)tanh(vd) in the denominator of Eq.~71!, which
depends onm r throughŨ(v).

If H̃y(v) is the Fourier transform ofHy(y) in y, then
Fourier transforming Eq.~28! gives

H̃y~v !5H̃y
~ i !~v !12

v2

ik
Ṽ~v !c̃~v !, ~72!

where H̃y(v)5H̃y(0,v,0), etc., andṼ(v) is given in Eq.
~37!. Substituting forc̃ from Eq. ~71! and making the thin-
skin approximation14

H̃yTM
~ i ! 'H̃y

~ i ! , ~73!

gives

H̃y~v !5
112~v/ ik !@Ũ~v !1Ṽ~v !#tanh~vd!

112~v/ ik !Ũ~v !tanh~vd!
H̃y

~ i !~v !.

~74!

From Eqs.~33! and~38! it is clear that, form r@1, Ũ andṼ
are equal and opposite so that

H̃y~v !mr@15
1

112~v/ ik !Ũmr@1~v !tanh~vd!
H̃y

~ i !~v !.

~75!

The impedance change due to a long slot can now
calculated by Fourier transforming Eqs.~52! and ~61! using

k.
N. Harfield and J. R. Bowler
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Parseval’s theorem. Note that if third-order contributions t
DZ are required, the approximation of Eq.~73! should not be
used since it has a third-order effect.

VI. PREDICTIONS AND EXPERIMENTAL DATA

In Figures 7 and 8, impedance predictions are compar
with experimental data from frequency scans for coils cen
tred over long slots in aluminium and steel, respectively
Predictions are made at the order of the first two terms in E
~3!, involving the expressions forZS and ZF given in Eqs.
~52! and ~61!. The experimental parameters are given i
Table I. In comparing theoretical predictions with data for
slot in aluminium, we show the improvement obtained b
retaining the scattered field termHyTM

(s) in Eq. ~22!. Predic-
tions made using Auld’s approximation,1,9 in which this term
is neglected, are shown as dashed lines in Figure 7 and r
resent an over prediction of about 15% inuDZu for frequen-

FIG. 7. Impedance predictions and experimental data for a coil centred ov
a long slot in aluminium. The broken lines represent predictions made usi
Auld’s assumption that the tangential magnetic field at the conductor surfa
is undisturbed by a surface defect~see Ref. 1!.

FIG. 8. Impedance predictions and experimental data for a coil centred ov
a long slot in mild steel.
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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cies above 50 kHz. The theory presented here predictsuDZu
to within 5%, which is the level of experimental error in the
measurements. Note that the strength of the scattered fie
term depends on the ratio of the coil diameter to the crac
depth. As this ratio increases, the predictions of Auld’s
theory and the theory presented here converge. The effect
omitting terms of order of the third term in Eq.~3! can be
seen in the over prediction of Re(DZ) at frequencies below
about 50 kHz. This discrepancy between theory and exper
ment can be largely eliminated by including the Kahn leve
terms in the predictions.

Theoretical predictions of the coil impedance change
due to a slot in mild steel, shown in Figure 8, agree with
experimental data to within 10% foruDZu. The error is larger
than for the slot in aluminium, and may in part be attributed
to the difficulty associated with measuringm r experimen-
tally. It is likely that the permeability of material near the
slot faces differs from that of the bulk as a result of surface
damage occurring during the manufacture of the slot. In
practice, it is the value of the bulk permeability which is
measured and used to make the predictions of impedan
change. In Figure 9, predictions are shown for a system ide
tical to that of Figure 8 but with different values of material
permeability. The impedance change depends onm r in a

er
g

ce

erFIG. 9. Predicted coil impedance change due to a long slot in materials o
different permeability.

TABLE I. Experimental parameters.

Material Type Aluminium Mild steel
s/Sm21 1.6673107 5.5873106

m r 1 8765
Defect Depth/mm 11.99 2.9560.05

Gape/mm 0.4160.08 0.3360.03
Coil Inner radius/mm 3.015

Outer radius/mm 5.46
Length/mm 2.94
lift-off/mm 1.32 1.29
No. of turns 900
Free-space inductance/mH 6.027
Resonant frequency/kHz 850
4599N. Harfield and J. R. Bowler
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complicated manner but from Figure 9 it can be seen th
increasing the value ofm r in the theory would improve the fit
to the data in Figure 8.

Finally we demonstrate the effect of varying the relativ
permeability of the material within the slot. In practice, de
fects may be filled with oxide deposits which can be elect
cally conducting and permeable. Predictions of coil impe
ance change are shown in Figure 10 for the defect of Figu
8 filled with material which is non-conducting but perme
able. It is evident thatuDZu increases asmc increases. This is
a consequence of the form of the term of orderk2 ~the
volume-dependent term! in Eq. ~61!. This result is consistent
with previous work which has shown that impedance pred
tions for air-filled defects in steel are relatively insensitive
the defect gape.15 It can be seen that this is the case b
puttingmc51 andm r large in Eq.~61!. For a typical crack in
which the gape is much smaller than the depth, the term
orderk2 is then likely to be much smaller than that of orde
k in the first term of Eq.~61!, renderinguDZu relatively
insensitive toa.

VII. CONCLUSION

A theory capable of predicting the impedance change
an eddy-current probe due to surface cracks in materials
arbitrary permeability is presented. The theory is valid in th
high-frequency regime, in which the electromagnetic sk
depth is significantly smaller than the crack dimensions a
the induced currents flow in a thin skin at the surface of t
conductor and at the faces of the crack.

The electromagnetic field induced by an eddy-curre
coil in a typical conductor interacts with a defect predom
nantly via the electric field. For a circular coil whose axis
centred over the plane of a crack, the normal component
the magnetic field is zero at the crack and the interacti
between the induced field and the defect occurs purely
the electric field. For a coil whose axis is offset from th
crack plane, however, there is some interaction between
magnetic field and the defect. The effect of this interaction
quite noticeable for slots with large gape in strongly ma

FIG. 10. Variation in the predicted coil impedance change due to a long s
as the relative permeability of the material filling the slot is varied.
4600 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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netic conductors, since the magnetic flux tends to rem
within the conductor rather than pass into the air gap in
defect, but is negligible in non-magnetic materials. Th
work considers only the interaction between the electric fi
and the defect. The solution is exact for circular coils cent
over the crack but predictions for coils offset from air-fille
slots in magnetic materials could be improved by includi
the interaction between the magnetic field and the defec

The impedance change in a coil is expressed as a po
series in the small parameter 1/ik and new forms for the first
three terms in this series are derived. They are expresse
one-dimensional integrals along the line of the crack mou
These integrals can be evaluated quickly, taking a few s
onds per point using a personal computer, and predicti
have been compared with experimental data for coils cen
over long slots in aluminium and mild steel. Good agreem
is observed.
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APPENDIX: HALF-SPACE FIELD ANAYSIS BY
SCALAR DECOMPOSITION

Consider the electromagnetic field in a problem dom
divided into two semispaces at the planez50. The upper
half space is non-conducting and the lower half space h
uniform conductivitys. The field is to be expressed in term
of TE and TM potentials defined with respect to differe
preferred directions in the two regions. In the upper h
space, region 1, the preferred direction is normal to the
terface between the conducting and non-conducting regi
In the lower half space the preferred direction is tangentia
the interface. For convenience, the coordinate system is
sen such that the preferred direction in the conducting
gion, region 2, is thex direction.

In homogeneous isotropic regions the TE and TM pot
tials obey independent equations but, because different
ferred directions are used in the two half spaces, cross c
pling occurs between the respective modes at the interf
The effect of this cross coupling is embodied in a 232 ma-
trix of interface transmission and reflection coefficien
which allow, for example, a TE mode to be reflected by
incident TM mode and vice versa.

The mode coupling is built into a set of half-space sca
Green’s functions that are defined below following a prelim
nary analysis which determines the transmission and refl
tion coefficients. The coefficients are derived for an arbitra
source in the conductor using a two-dimensional Fou
transform of the field. Then the scalar Green’s functions
found as a special case by considering singular sources

ot
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A. Scalar decomposition

Assuming a time dependence exp(2ivt), the electric
field in the non-conducting region, region 1, may be e
pressed using a TE potentialc18 and a TM potentialc19 :10,16

E~r !5 ivm0@¹3 ẑc18~r !2¹3¹3 ẑc19~r !#, z.0,
~A1!

whereẑ is a unit vector normal to the plane of the interfa
defined byz50. Similarly, the electric field in the conduc
ing region will be represented as

E~r !5 ivm@¹3 x̂c28~r !2¹3¹3 x̂c29~r !#, z,0,
~A2!

where x̂ is a unit vector tangential to the conductor surfa
and m5m0m r , wherem r is the relative permeability of the
conductor. In terms of the TM and TE potentials, the ma
netic field in each region is given by

H~r !5¹3¹3 ẑc18~r !, z.0 ~A3!

and

H~r !5¹3¹3 x̂c28~r !2k2¹3 x̂c29~r !, z,0. ~A4!

Using Maxwell’s equations it can be shown that

¹2¹z
2c1~r !50, z.0, ~A5!

~¹21k2!¹x
2c2~r !50, z,0, ~A6!

where it is implicit that thec i carry either a single or doubl
prime, depending on whether they represent the TE or
TM potential, respectively,i 51,2,

¹x5¹2 x̂
]

]x
and ¹z5¹2 ẑ

]

]z
. ~A7!

Equations for the coefficients which couple the TE a
TM potentials at the interface between regions 1 and 2
found through consideration of the field continuity cond
tions at the interface;

ẑ3E~r1!5 ẑ3E~r2!, ~A8!

ẑ3H~r1!5 ẑ3H~r2!, ~A9!

wherer1 and r2 represent limiting values of the field coo
dinates at the interface as it is approached from above
below, respectively. These equations express the contin
of tangential electric and magnetic field components acr
the boundary. The coupling coefficients are most con
niently found by using the two-dimensional Fourier tran
form with respect to thex andy coordinates. Define

F5 ~u,v,z!5E
2`

` E
2`

`

F~r !e2 i ~ux1vy!dxdy, ~A10!

whereu andv are Fourier space coordinates. Transform
Eqs.~A5! and ~A6! using Eq.~A10! reveals thatc1 andc2

obey the following second-order differential equations inz:

S ]2

]z2 2k2Dc5 1~u,v,z!50, z.0, ~A11!
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S ]2

]z2 2g2Dc5 2~u,v,z!50, z,0, ~A12!

where k5(u21v2)1/2, g5(u21v22k2)1/2 and roots with
positive real parts are taken.

B. Internal source

The precise nature of the coupling between the TM a
TE potentials at the interface between regions 1 and 2
now be established for a source within the conductor. T
solution of Eq.~A11!, vanishing asz→`, may be written

Fc5 18~u,v,z!

c5 19~u,v,z!
G5Fc8

c9Ge2kz. ~A13!

The solution of Eq.~A12! in the region above the source b
below the surface of the conductor has the form

Fc5 28~u,v,z!

c5 29~u,v,z!
G5Fa8

a9Ge2gz1Fb8
b9Gegz. ~A14!

The first term on the right-hand side of Eq.~A14! represents
the free-space solution in the conductor, theai are source-
dependent coefficients,i 58 or 9. Thebi andci are related to
the ai via reflection and transmission coefficients which a
found by using the field continuity conditions at the condu
tor surface, Eqs.~A8! and ~A9!. In some special cases the
is no cross coupling between TM and TE potentials at
conductor surface but in general the possibility must be
lowed for. This allowance can be made by defining the f
lowing relationships between the coefficients in Eqs.~A13!
and ~A14!:

Fb8
b9G5FG11 G12

G21 G22
G Fa8

a9G , ~A15!

Fc8
c9G5FT11 T12

T21 T22
G Fa8

a9G , ~A16!

where theG i j ( i , j 51,2) are reflection coefficients and th
Ti j are transmission coefficients. Using Eqs.~A2! and~A4! it
is found that

2 iuc81 ivkc95m rg@a82b8#2m ruv@a91b9#, ~A17!

2 ivc82 iukc95m r~u22k2!@a91b9#, ~A18!

2 ivkc85uv@a81b8#2gk2@a92b9#, ~A19!

iukc852~u22k2!@a81b8#. ~A20!

Expressing the solution of these equations in the form
Eqs.~A15! and ~A16! gives

DG1152gk~u22k2!1m r~g2u21k2v2!,
~A21!

DG12522m rgk2uv,

DG21522m rguv,
~A22!

DG225gk~u22k2!1m r~g2u21k2v2!

and

DT1152
2m rg

2u~u22k2!

ik
,
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DT125
2m rgk2v~u22k2!

ik
, ~A23!

DT215
2m rgv~g1m rk!~u22k2!

ik2 ,
~A24!

DT2252
2m rg

2u~g1m rk!~u22k2!

ik2 ,

where

D5k~g1m rk!~u22k2!. ~A25!

Note thatG22 can be written

G22511
2m rv

2k2

D
, ~A26!

which demonstrates clearly that the nature of the reflectio
the boundary reduces to a simple image when the sp
frequency in they direction is nugatory.

C. Scalar Green’s functions

In principle, a solution for thec i in the form

Fc18~r !

c29~r !G5E FU11~r ,r0! U12~r ,r0!

U21~r ,r0! U22~r ,r0!
G F j 8~r0!

j 9~r0!Gdr0 ~A27!

is sought. However, for the specific crack problem at han
surface integral is to be formed using Green’s second th
rem which means that the precise forms of the volume
scalar sourcesj 8(r ) and j 9(r ) are not needed. The couple
Green’s functions required satisfy

¹2FG11~r ,r0! G12~r ,r0!

G21~r ,r0! G22~r ,r0!
G5F0 0

0 0G , z.0, ~A28!

~¹21k2!FG11~r ,r0! G12~r ,r0!

G21~r ,r0! G22~r ,r0!
G

52d~r2r0!F1 0

0 1G , z,0, ~A29!

with

lim
ur u→`

Gi j 50, i , j 51,2. ~A30!

The functionsUi j (r ,r0) are related to the Green’s function
by

Gi j ~r ,r0!52¹z
2Ui j ~r ,r0!, z.0, ~A31!

Gi j ~r ,r0!52¹x
2Ui j ~r ,r0!, z,0. ~A32!

Imposing the same interface conditions on theUi j (r ,r0) as
apply to their corresponding potentials makes theUi j (r ,r0)
become, in effect, the potential due to a singular sou
at r0 .

Defining

G5 i j ~z,z0!5E
2`

` E
2`

`

Gi j ~r ,r0!e2 iu~x2x0!2 iv~y2y0!dxdy,

~A33!
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i , j 51,2, allows the transformation of Eqs.~A28! and~A29!,
giving

S ]2

]z2 2k2D FG5 11~z,z0! G5 12~z,z0!

G5 21~z,z0! G5 22~z,z0!
G5F0 0

0 0G , z.0,

~A34!

S ]2

]z2 2g2D FG5 11~z,z0! G5 12~z,z0!

G5 21~z,z0! G5 22~z,z0!
G

52d~z2z0!F1 0

0 1G , z,0. ~A35!

Using the same two-dimensional Fourier transformati
Eqs.~A31! and ~A32! become

G5 i j ~z,z0!5k2U5 i j ~z,z0!, z.0, ~A36!

G5 i j ~z,z0!52S ]2

]z2 2v2DU5 i j ~z,z0!, z,0. ~A37!

The reflection and transmission coefficients given abo
will now be used to construct half-space Green’s functio
for the potentials. The form ofG5 i i must reflect the presenc
of the singular source atz5z0 . Let G5 0 be an unbounded
domain scalar Green’s function which exhibits the followin
behavior:

F ]G5 0

]z G
z5z01

2F ]G5 0

]z G
z5z02

521, ~A38!

@G5 0#z5z012@G5 0#z5z0250. ~A39!

The general solution forG5 0 is of the form

G5 05H A~g!e2g~z2z0!, z.z0

B~g!eg~z2z0!, z,z0
. ~A40!

Applying Eqs.~A38! and ~A39! to Eq. ~A40! yields

G5 05
1

2g
e2guz2z0u. ~A41!

The source term contained inG5 i i is, therefore, given by Eq
~A41!. Comparing Eqs.~A41! and ~A32! with Eq. ~A14!
allows the deduction that

a85a952
1

2g~u22k2!
egz0 ~A42!

for a singular source atz0 wherez0,z. In addition to the
singular term, theG5 i i contain non-singular terms which rep
resent the reflection, at the conductor surface, of the outgo
‘‘wave’’ from the source. From Eqs.~A14!–~A16! and Eq.
~A41! it is found that

FG5 11~z,z0! G5 12~z,z0!

G5 21~z,z0! G5 22~z,z0!
G

52
k2

2g~u22k2! FT11 T12

T21 T22
Geg~z1z0!, z.0, ~A43!
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FG5 11~z,z0! G5 12~z,z0!

G5 21~z,z0! G5 22~z,z0!
G

5
1

2g H F1 0

0 1Ge2guz2z0u1FG11 G12

G21 G22
Geg~z1z0!J , z,0.

~A44!

Assuming that theG5 i j and theU5 i j have the samez de-
pendence, Eq.~A37! can be written

G5 i j ~u,v,z,z0!52~u22k2!U5 i j ~u,v,z,z0! z,0.
~A45!

The Green’s functions can now be related to the functi
U5 i j by means of Eqs.~A36! and ~A45!:

FU5 11~z,z0! U5 12~z,z0!

U5 21~z,z0! U5 22~z,z0!
G

52
1

2g~u22k2! FT11 T12

T21 T22
Geg~z1z0!, z.0, ~A46!

FU5 11~z,z0! U5 12~z,z0!

U5 21~z,z0! U5 22~z,z0!
G

52
1

2g~u22k2! H F1 0

0 1Ge2guz2z0u

1FG11 G12

G21 G22
Geg~z1z0!J , z,0. ~A47!
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These functions satisfy the field continuity conditions on t
interface between the two regions.
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