Theory of thin-skin eddy-current interaction with surface cracks
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Eddy-current non-destructive evaluation is commonly performed at relatively high frequencies at
which the skin depths are significantly smaller than the dimensions of a typical crack. A thin-skin
analysis of eddy currents is presented in which the electromagnetic fields on the crack faces are
described in terms of a potential which obeys a two-dimensional Laplace equation. Solutions of this
equation for defects in both magnetic and non-magnetic materials are determined by applying
thin-skin boundary conditions at the crack perimeter. The impedance change of an eddy-current coil
due to the defect is then calculated by numerical evaluation of one-dimensional integrals over the
line of the crack mouth, the impedance integrals having been derived with the aid of a reciprocity
relationship. Theoretical predictions are compared with experimental data for long, uniformly deep
slots in aluminium and mild steel and good agreement between theory and experiment is obtained.
© 1997 American Institute of Physid$50021-89787)06920-X

I. INTRODUCTION piece and the other in a test piece of relative permeability
. . 100. These results indicate that the response from cracks in
In eddy-current non-destructive evaluatioNDE), the  oomagnetic materials differs in magnitude and frequency

presence of a defect in a metal component is indicated by @ iation from that of cracks in non-ferromagnetic materials
change in the impedance of a probe. The change in prob% similar conductivity

impedance due to the interaction between eddy currents an Previously, a number of approaches have been taken in
the.fla.vv can be predlc_:ted theoretically from th? eleCtromag'solving for the electromagnetic field at the crack in the thin-
netic field. Here, the field at a crack due to a tlme—harmonlcSkin regime. These developments include the work of Auld
e?<C|tat|on by an |ndupt|on C.O'I is calculated in tgrms 9f Aot al,! who considered cracks in aluminium alloys, and
single scalar potential which obeys a two-dlmen5|onaILeWiS et al? who were mainly concerned with flaws in fer-

Laplace equation in a domain corre_spond|_ng to the Cradfomagnetic steels. A common feature of these studies is the
surface. A solution is found by applying sitable boundaryuse of the two-dimensional Laplace equation. Their distinc-

conditions and the coil impedance change due to the crack e theoretical aspects stem from the boundary conditions

calculated from the potential. S L . .
. . that are applied in obtaining the solution. The calculations
Although the surface potential used in the present for- PP 9

. - i . for cracks in aluminium were performed using Auld’s
mulation satisfies the Laplgge equation at an grbnrary freélpproximationl;3 in which it is assumed that the external
quency, the poundary con(jltlons useq to deter.mlne'the SOIUrhagnetic field tangential to the conductor surface is undis-
tlo'n are restrlct.ed to the thin-skin regime. In this regime, theturbed by the crack. The approximation is reasonable pro-
skin depth,5, given by vided that the ratio of the coil diameter to the crack depth is

2 172 not too small, but this limitation leaves room for improve-
:( ) D ments in the predictions. In magnetic materials, the field in

the vicinity of a crack is markedly different to that in alu-
is substantially smaller than the depth and length of theninjum since the magnetic field tangential to and at the sur-
crack. It is estimated that reasonably accurate predictions caggce of the conductor is perturbed significantly. The per-
be made with the restricted boundary conditions provided thurhed magnetic field at the crack mouth has been taken into
crack depth and length are greater than approximately thregecount by Lewiset al>* by deriving a boundary condition
skin depths. Crack inspection that conforms to this conditiorusing a flux conservation argument applied to a region
is very common in practice because the probe sensitivity iground the opening. The resulting theory is applicable to
likely to decrease as the frequency is lowered. A theoreticalaterials of arbitrary relative permeability.
model valid in the thin-skin regime is therefore widely ap- In an earlier analysis of the field at cracks in magnetic
plicable both to the evaluation of crack signals in ferromag-naterials by Collinst al® attention was focused on the line
netic steels and to high-frequency testing of non-magnetigoundary between the conductor surface and the crack face.
materials. 3 . . At this boundary, referred to as the fold line, the normal

The permeability of the material has a strong influencecomponent of the current and the normal magnetic flux are

on the impedance change of the coil. This is clearly demongeemed to be continuous. This implies that a complex poten-
strated in Figure 1, where predictions of coil impedanceq| representing the field in the surface plane and on the
change as a function of frequency are shown for a coil ceng4ck face is analytically continuous at the fold line. Conse-
tred over two identical long slots, one in a non-magnetic tes&uently, the problem domain consists of a half plane repre-
senting half of the conductor surface adjoining one crack
dElectronic mail: n.harfield@surrey.ac.uk face unfolded into a common plane. A solution in this do-
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FIG. 1. Predicted impedance change for two identical long slots, one in a
non-magnetic material and one in a material with=100. Apart from the
value of u, , the parameters used in these predictions are given in the last
column of Table I. ; ; ot ;
term is a surface effect and the third, purely resistive term, is
due to the special behavior of the field at the crack mouth
and edge. Auld refers to the edge and mouth impedance con-

main corresponds to a surface potential that can be measuriputions as the Kahn terms. An improved analysis of these
directly using contacting electrodes. The continuity conditioncontributions has been given by Harfield and Bowler.
is likely to be accurate for cracks of finite gape in materials ~ In three-dimensional problems, it is not necessarily de-
of high permeability but the implication of later work is that sirable to restrict the solution in such a way that the coeffi-
the approach represents the high permeability limit of a moré&ients in the impedance expression are real. This is because a
general theory. precise adherence to a strictly ordered expansion makes the
In the present study, the required boundary condition aghalysis somewhat cumbersome. For example, in defining an
the crack mouth is determined as a limiting case of an exunperturbed field, it is preferable to use the exact integral
pression valid at arbitrary frequency and permeability. In or-expressions available from the work of Dodd and Déeds,
der to improve on Auld’s approximation, the perturbation of rather than a more awkward power series decomposition of
the surface magnetic field by the crack is taken into accounth€ expressions.

The resulting expressions are comparable with, but differ in [N the present study of the three-dimensional thin-skin
detail from, those of Ref. 4. crack problem, the impedance contributions corresponding to

In the thin-skin regime, calculations can be ordered inthe terms of Eq(3) are derived for an arbitrary crack shape.
terms of the small parameteri/ wherek is a complex |mpedance predictions are then compared with experiments

FIG. 2. Plan schematic view of an eddy-current inspection.

wave number given by on long slots of uniform depth. For cracks whose depths are
) only a few times greater tha# the third term in Eq(3) is

_ ﬂ ?) significant and, since it is related to the non-thin-skin behav-

o ior of the fields near the crack perimeter, it has a larger effect

as the skin depth is increased. The term has previously been
; gvaluated approximately by Auldby weighting two-
dimensional solutions for a long crack in a uniform incident
field®” with the locally varying component of the magnetic
field directed tangential to the crack perimeter. We discuss
this term and propose a new approximate expression which
gonforms with reciprocity principles. Note that even for de-
Yects of depth 3, however, the contribution &\ Z| from the
third term in Eq.(3) is typically only about 5%.

-1

AZ=75 )

In particular, it is found that the coil impedance chaniyg,
72 l
C_ol—| +c_;

1 0
where Z° is a real normalising factor and the are real
coefficients. For cracks whose dimensions are an order
magnitude or more greater tha@honly the first two terms in
Eq. (3) are required to represeidZ to a reasonable accu-
racy. The second and third terms of the above series a
given by Kahnetal® for the two-dimensional thin-skin
problem of eddy-current interaction with a long crack of uni- Consider a coil whose axis is offset from the crack
form depth and negligible opening. The first term in theplane,x=0, as shown in Figure 2. For such cases, the solu-
above series, a purely imaginary term, is missing from thdion can be found as the averaged sum of solutions for the
Kahn expression for impedance because it represents the efdd and even configurations shown in Figure 3. In these
fect of crack opening which was not originally considered byconfigurations, an image coil mirrors the real coil in the
Kahn et al® The imaginary term is associated with the elec-crack plane. In the even configuration, Figurf@)3the cur-
tromagnetic energy stored in the crack volume. The secontent flows in the same sense in each coil giving rise to an

rI . SYMMETRY CONSIDERATIONS

J. Appl. Phys., Vol. 82, No. 9, 1 November 1997 N. Harfield and J. R. Bowler 4591

Downloaded 08 May 2004 to 129.186.200.50. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



crack ]

’ ‘ . o A
direction of ; N .
current flow ' /,1\ air

\\ h
N . /
A y
coil image coil crack
X Sc
b)
conductor

FIG. 4. A surface crack in a conducting half space.

AN g perturbation. Since the magnetic field perturbation is signifi-
cant only for coils offset from defects of substantial gape in
highly permeable materials, we proceed to solve the problem
in terms of the even configuration of FiguréaBalone, in
which the electric interaction dominates.

FIG. 3. The averaged sum of solutions faj odd and(b) even configura-
tions gives the solution for a coil whose axis is offset from the plane”' SCALAR FORMULATION
of the crack. '

A. Surface potential

Consider the planar crack in a conductor whose surface
electric field whosex component is even with respect to the is in the planez=0, Figure 4. It is assumed that the electro-
x coordinate. In the odd configuration, the current in themagnetic field varies as the real part of expgt), that the
image coil flows in the opposite sense to that in the real coimaterial properties are linear, that the displacement current is
and thex component of the unperturbed electric field, thenegligible and that the conductor is sufficiently thick to be-
component normal to the crack plane, is oddin have as a half space. For the purpose of calculating the fields
An open narrow crack in a metal having a permeabilityit is also assumed that the crack is ideal in that it has a
greater than that of free space acts as barrier to the flow afegligible opening but forms a perfect barrier to the flow of
current and a partial barrier to the magnetic flux. In the evercurrent. The calculation of the impedance change due to the
system of Figure @), the electromagnetic field can be defect presented in Section IV does, however, allow for the
viewed as interacting with the crack mainly through the elecpossibility of finite gape.
tric field, since the component of the unperturbed magnetic  The field calculation proceeds by decomposing the elec-
field normal to the defect plane is zero. In the odd system ofric and magnetic fields in the conduct@<0, into trans-
Figure 3b), the converse is true; the electromagnetic fieldverse electric (TE) and transverse magnetidTM)
interaction can be viewed as magnetic since the componesbmponents®
of the unperturbed electric field normal to the defect plane is E()=i S 5o
Ser0. (N=iopmou [ VXX (r)=VXV XX (r)], z<O,4
For cracks in non-magnetic materials, and for cracks (
with a small opening in magnetic materials, the magnetic ~ H(r)=VXVXXy'(r)—k?VxXy"(r), z<O0, 5
interaction is negligible. In these cases the problem can bgqre the preferred directior, is normal to the crack plane,

solved purely in terms of the even configuration of Figurew, is the TE potential,’ is the TM potential andk?
3(a), which describes the flow of induced current around the:iw,u,,uoa. By substitu’ting Eqs(4) and (5) into the elec-

defect. For a coil whose axis is centred over the defec_:t, th?romagnetic field equations, it can be shown that the TE and
problgm can also be solved in terms of the even con_flgl_JraTM potentials satisff

tion since, by symmetry, the component of the magnetic field

perpendicular to the defect plane is zero. If, however, there is  (V2+k?)VZy/(r)=0, (6)

a significant air gap between the faces of a crack in a mag- 2 LoNe2 s

netic material, and the coil axis is offset from the crack (v <) Vx¥# (=0, ™
plane, then there may be a substantial magnetic interactiowhereV,=V —Xd/dx is the transverse gradient with respect
This interaction is strengthened if the ratio of the materialto the x direction. Although the potentials are not coupled
permeability to that of the defect is increased or if the size othrough their governing equations, they are related through
the defect gape is increased, but, in most cases, its effect ke interface conditions at the surface of the conductor. This
still small when compared with the effect of the electric field interdependence is expressed in terms sf22 matrices of
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reflection coefficients and transmission coefficients, given in V)Z(l/,f/(r)zo, reSe, (13
the Appendix, which account for the fact that a TM field
incident on the interface reflects and transmits both TE anevhereV? is the Laplacian operator transversextaNote that
TM modes, the same being true of an incident TE mode. Eq.(13) shows that)”"(r) satisfies the surface Laplace equa-

In a half-space problem formulated using Hertz poten-ion regardless of the frequency.
tials, it is usual to choose the preferred direction as the nor- Having established the general behavior of the potentials
mal to the interface. By following this standard formulation at the crack surface, an integral equation will be given which
the coupling between potentials through the interface condideterminesy”(r) at an arbitrary frequency. Although it is
tions is avoided. Although the present choice of preferregossible to use this equation as the basis for computing nu-
direction leads to coupled interface conditions, the chosemerical solutions, it will be used here for the more limited
modes are decoupled at the crack surface. In fact, the Tpurpose of defining a crack mouth boundary condition in
mode does not interact directly with an ideal crack at all.order that the Laplace equation, E3), can be solved. For
Instead, it is perturbed indirectly via its link with the TM notational convenience write
mode at the surface of the conductor. Because direct TE
interaction with the crack is absent, the TE potential and its = —k?y/". (14)
gradients are continuous at the crack plane. In contrast, the _ . o
TM potential is subject to a direct crack-field interaction and Then, in the presence of an ideal cragksatisfies
therefore has a discontinuity at the crack.

In order to examine the discontinuity of the TM Hertz W(r)= ¢<i>(r)+f G(r,r")p(r')ds, resS;, (15)
potential, the properties of the electromagnetic field at the Se

crack are reviewedf Firstly, it is noted that the tangential

magnetic field is continuous at an ideal crack, a conditionVhere the superscripti X denotgs the incident, or unper-
that can be written as turbed, field. The Green’s function for the TM potential in a

half-space conductor, derived in the Appendix@s(r,r’),
H(r ) —Hi(r-)=0, (8 s given by

where the* subscripts refer to limiting values of the coor- iKlr—r’| iK|r—r"| 5
i i i e e' 19
dinate as the crack plane is approached from one side or the G(r,r')= n + gy
other and the subscrifit denotes components tangential to ' dmlr—r'|  4m|r—r"[  Kk* dy
the crack. In the absence of direct TE interaction, the mag-

X ! —v' 74+ 7'
netic field continuity condition applies to the TM contribu- Uix=x"y=y'.z+27), (16
tion alone and implies that wherer”=r'—2%z’ is the image point and
P'(ry)—y¢"(r-)=0. 9 1 4
r
L

faceS;.

The tangential electric field has a discontinuity at the
crack which can be expressed as the gradient of a scalar X[(MZ_l)KZ.,. k2]
function!?! a relationship that is written '

Mrk4 0 o0 1
Thus the TM potential itself is continuous at the crack sur- ~ Y(XY,2)= (2m)2 f_mf_m P—K2
1

e yz+iux+ivydudv

17

1
B(ro)—E(r-)=——Vip(r), res, (10 wherey=(u?+v?—k?Y? and k= (u?+v?)*2
Equation(15) could presumably be derived with the aid
wherep(r) is the equivalent source density of the crack rep-of Green’s second theorem applied to a surface surrounding
resented by a layer of electric current dipoles orientated northe crack. However, there are major complications involved
mal to the crack surfac;. Since the jump in the electric in such a derivation because the crack intersects the surface
field is solely due to the TM mode, it can be seen from theof the conductor where the scalar fields are coupled. Instead

form of the TM contribution in Eq(4) that of attempting a first principles derivation, our justification for
oy o 1 using Eq.(15) relies on an equivalence between the present
— ——| =p(r), reS.. (11  scalar representation of the field and a vector potential for-
X r. X r_ k mulation given previously? The connection is made by not-

) ) o ing that thex component of the current density due to the
Hence the TM potential has a discontinuity in its normal ey rhed field at a crack face is equal and opposite to the

gradient at the crack surfack. unperturbed current density. Writing this as
Assuming that the crack is impenetrable to eddy cur-
rents, then the normal component of current at the crack V2yS(r)=30(r), res,, (18)
surface is zero. For a crack in tlye plane, this leads to the
condition where the superscripts) denotes the perturbed field, and,
o noting the correspondence with Ed.7) of Ref. 12, allows
E(r)-x=0, resS. (12 an identification of an integral expression f¢f9(r) from
Applying Eq.(12) to Eqg. (4) shows that which Eq.(15) follows.
J. Appl. Phys., Vol. 82, No. 9, 1 November 1997 N. Harfield and J. R. Bowler 4593
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B. Boundary conditions To summarize, the TM potential at the crack surface has
been shown to satisfy a two-dimensional Laplace equation,
Eqg. (13) at arbitrary frequency, the boundary conditions atEq' (1_3)' regardless of the frquency or skin dep_th. This

quation will be solved by applying boundary conditions at

the crack edge and mouth given in this section are valid onl X
in the thin-skin limit. In the thin-skin regime, the component he. crack edge and mouth,.Ec(Ql) and (24), respectively,
which are valid for small skin depths.

of the magnetic flux density normal to the crack edge is
zero? From this we deduce that

Hru(re)-n=0, (19  C. Magnetic field

wherer denotes the coordinate of a point at the crack edge In order to evaluate the impedance due to an open crack,
andn is a unit vector pointing outward from the crack edgethe total magnetic field at the crack mouth in the plane of the
and lying in the crack plane. Noting that surface of the conductor is required. The field in this region
_ - is approximated by the magnetic field at the line of the crack
Hr(r)=Vxxi, (20 mouth for a closed crack. The magnetic field can be written
and applying Eq(19) to Eq. (20) shows that on the crack as a sum of the field incident from the coil and an integral
edge form of that scattered by the defect:

h(re)=0, (21)
where an arbitrary integration constant has been set to zero.

(At the crack mouth, a boundary condition is applied,;aren is an equivalent current dipole density at the crack.
which is derived from the magnetic field transverse tq theThis relationship is found from the corresponding integral
surface of the conductor. In general theomponent of this o ,ati0n for the electric fiellf: The half-space Green’ func-

field can be expressed as tion is given by
Hymm(m) =Hytu(rm) + HiZu(rm), (22 N T B TS I

wherer,, denotes the coordinate of a point at the crack g(r.r')=— dalr—r'] +47-r|r—r”| Ty
mouth. In dealing with cracks in non-magnetic materials,
Auld™® neglects the terni {3 (r,,) which implies that the

While ¢ satisfies the surface Laplace equation given in

Hy(r)=H<yi)(r)+Lg(r,r’)p(r’)dS’, res,, (25

perturbation of they component of the magnetic field due to XV(x=x"y=y",z+2)|, (26)
the crack is negligible at the crack mouth. By retaining the v any . .
effect of the scattered magnetic field in the boundary condiwherer =r'—2zz' is the image point and
tion, it is found that an additional impedance contribution 1_,
arises which is in fact of higher order than that of the Kahn ~ V(X.y,2)=12ViU(Xy,2)
terms. In the case of magnetic materials, the effect of the
scattered magnetic field on the mouth boundary condition is . rk? f” fw 1w
somewhat larger than for non-magnetic material and there- T2m?) L)k oy
fore cannot be ignored.
In the thin-skin regime the kernel of EL5) is highly % 1 e YZriuxtioyq gy
localised such that in the limit its effect can be represented [(u2—1)k?+Kk?] '
by a delta functiort? The localization of the kernel has been 5
used to show that @7
) Using the thin-skin relation betwegm and ¢ given in Eq.
p(r)~—2iky(r), 23 (23 it is found from Eq.(25) that
in the thin-skin limit'2 Although the functional form op(r) 2 (e g2
and (r) are different at the mouth of the crack, E@3) Hy(rm) =H(rp) — — f —
approximates the magnitude of the dipole density in that re- itk J—cr2 9y
gion. ! ' ’
Differentiating Eq.(15) with respect ta, using Eq.(23) X VOy=y .0 w0y 0y, (28
and restricting’ to r,, gives where r,, denotes the coordinate of a point at the crack
0 5 mouth andc is the crack length. Again, the integration with
ap(r)| _ay(r) 2 JC/Z J respect toz' has been carried out by assuming that
iz | _, dz | _, ik J-cp ay? Y"(0y',z") varies slowly withz' and is therefore roughly
" " constant over the effective range of the kernel inzhrec-
xXU0y—y',004(0y’,0dy’, (24)  tion.
wherec is the crack length. The integration with respect to
z' has been carried out by assuming thid0)y’,z’) varies D. Fourier representation
slowly with z' and is therefore roughly constant over the — P
effective range of the kernel in thedirection. Equatior{24) The kernelU in the integral of Eq.(24) can be repre-
is the thin-skin equivalent of Eq22). sented in terms of its Fourier transformym
4594 J. Appl. Phys., Vol. 82, No. 9, 1 November 1997 N. Harfield and J. R. Bowler
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U(x,0,2)= fm U(x,y,z)e "vd (29 V(v)= prk? f‘” 1 ﬂ) du, (36)
1V W 1y| y- U 277 ol K y [(Mrz—l)K2+k2] 1
From Eq.(17) we then have, puttin@(v)=U(0,v,O), which can be integrated to give
~ owkte 1 (1w ~ V2= 1w+ 1+
e = Ty~ L S L
7T \/(/-Lr_l)w +1-
1 2 2
X : 1 V(p2=1)w?+1+1
(2= D) 2T K] du (30) (mr

- n
Vi =1w?+1 | J(pl-Dw?+1-1

The integral of Eq.(30) can be evaluated by splitting the

integrand using partial fractions and then using the standard (37)
form Equation(37) is valid for all u, . For highly permeable ma-
. du terials, Eq.(37) can be approximated by
F(a,B8)=
(a.p)=] (W= a?) VPt (Bo—ad) Yoy, e 1+V%+1 | -
1 (a-B R N R R TN )
- @ n at+B) 3D Note that this term is equal and opposite to the high perme-
_ _ ~ ) ability form of U(v) given in Eq.(33). For u,=1, the inte-
The resulting expression fdd(v) is gral of Eq.(36) can be evaluated using the standard form
~ Mr Mr 1+w du
U(v)_ 277[(/"r2_1)W2+Mr2]| w In 1-w f \m:ln(u+ VU2+C¥2), (39)
1 I 1+ V1+w? giving,
- n
Vi+w? | 1—1+w? _ 1 ( W )
V), -1=——In| ———]. (40
wi—1 JEZ=DWo+ 1+, “ | WPl

In

+
VE=1w?+ 1]\ V(pf- D)W+ 1- g,

D1+ 1
J(u?—1>w2+1—1)
wherew=v/k. Equation(32) is valid for all u, . For highly
permeable materials, the last two terms in E32) dominate
andU(v) may be approximated by Define the impedance change in a coil due to a defect as
U(v), o1~ ——m—n L1 AZ=2=12,, (42)
' 2mP+1 |\ 1-VP+1 whereZ is the impedance of the coil in the presence of the

where¢=u,v/k. For non-permeable materials, the last twoflawed conductor and, is the coil impedance in the pres-

Equations(37)—(40) are used in Eq(28) to evaluate the
surface magnetic field as required for the calculation of

—In probe impedance.

] , (32

IV. PROBE IMPEDANCE

: (33

terms in Eq.(32) vanish and ence of a similar but unflawed conductor. The impedance
change can be written as the following integral over the coil
~ 1 1+w region:
V1= M 1w |
AZ= —f [E-E"].JdV (42)
1 | 1+ J1+w? 34 Q
- n . o . .
J1+w? 1—/1+w? (34) for unit coil current. Equatiori42) is transformed to a sur-
face integral by noting that
This term, used in Eq.24), provides a correction to Auld’s g y g
theory in which the scattered tangential magnetic field at the (VXVX—k?)E=ioul, (43

conductor surface is assumed to be Z&td. o i
—K)EM =]
In a similar manner, the kern& in the integral of Eq. (VXVX=KI)E =10, (44
(28) can be represented algebraically in terms of its Fourieand puttinga=E(") andb=E/iwu in the identity
transform iny:
- o _ f [b-VXVXa—a VXVXbhldV
V(x,u,z):f V(x,y,z)e '""Ydy. (35

From Eq.(27) we have, puttin&/(u)=\~/(0,v,0), :J [ax (VXxb)=bx(Vxa)]-dS. (45
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This gives air L

M

Az=—f[E“>><H—E><H<”]-ﬁdS (46
S

wheren is an outward pointing unit vector normal to the
surfaceS which encloses the coil. In order to calculat&,

Eq. (46) is transformed so that the impedance is expressed in
terms of quantities which are either known or are easily de-
rived from the surface potential. This is accomplished by
eliminating the perturbed and unperturbed electric fields as
follows. Choose the surfacg so that it coincides with the FIG. 5. Pathd  andL,, .
conductor surface and then split the integral of Ef) into

two parts, an integral over the crack mout,, and an

_
0
.,
_

7

O

\

integral over the unflawed conductor surfage; S,,: :ik_a 2 i
ZS o _C/ZHy (Ovyyo)Hy(oyylo)dyv (52)
Az= L [EVXH-EXH"]-2dS wherea is the crack gape. Integration with respecixtbas

been carried out by assuming that the magnetic field approxi-

) o mates a linear function over the width of the crack opening.

+ JS_S [EVXH-EXH"]-2dS. (47 Physically,Zs describes the impedance change resulting

™ from removal of part of the surface of the unflawed conduc-

The first term in Eq(47), written as tor on introducing the flaw. It can be calculated from a one-

dimensional integral along the line of the crack mouth, as
given in Eq.(52). The incident magnetic field required in Eq.
(52) can be evaluated, for a coil with axis perpendicular to
the conductor surface, using closed-form expresSiamsi

iS eVaIuated firSt, fo”OWed by a StriCtly thin'skin eVaIUation they Component of the tota' magnetic fleld can be Ca'cu'ated

Zs= L [EVXH]-zdS, (48

of the second term in Ed47), denoted using Eq.(28). From Eq.(52) it is evident thaZ contributes
to AZ at the order of the second term in E8) and that the
Ze= _f [ExH1D].2dS. (49 contribution vanishes as the gape tends to zero.
S

m

Finally, the integral oveS—S,, is evaluated approximately B. Evaluation of Zp

along with terms of the same order in the integral Bf We will evaluate the integra| of Eq49) using the sur-
xH® over S,,. The aim is to find the total impedance face impedance boundary condition. This leads to contribu-
change due to cracks with finite opening by using field solu+jons toAZ of the order of the first two terms in E(). The
tions that have been found for cracks of zero opening. |neViresulting expression, combined witdg, accurately ex-
tably this involves further approximations, particularly in presses\Z at the order of the first two terms in E¢p).
dealing with the smaller terms, but the results show that good  The expression faZq given in Eq.(49) can be written in
predictions are possible even in the absence of a rigorougrms of field components which are either known or can be
solution to the open crack problem. calculated by means of the following manipulation. Write

A. Evaluation of Zg

Ze=— | [HVDxZ]-EdS. 53
In the thin-skin regime, a relationship between the trans- F Jgﬂ[ 2l 53

verse field components at the conductor surface can be d
rived from Maxwell's equations by assuming that the field
varies much more rapidly in the direction normal to the
boundary than in the direction tangential to the boundary. _ 2 )

This relationship, known as the surface impedance boundary Zp=- f_c/zHy (0y.0

condition, is expressed in terms of the unperturbed field as ) o )
Now E, is, by the definition of Eq(4), expressed in terms of

the TM potential alone. This means that

Rgain assuming tha () andH{ are linear across the crack
and making use of Eq51) allows Eq.(53) to be written

al2
f E(x,y,0)-dx|dy. (54)
—al2

. Lok
7% E{')=;H§'), (50)

where the subscript refers to transverse field components. and
Using the fact that

cl2 ) a2
Ze=— H{(0y,0 f Erm(x,y,0)-dx|dy. (56
H,(0y,00=0, (51) F ch/z y (Oy ) a2 (XY ) y (56)
as required by the symmetry argument of Section Il, andrhe line integral in square brackets will now be written as
applying Eq.(50) to Eq. (48) gives the difference between an integral which completely en-
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closes the flaw, following path,, and one which excludes
the mouth region, following path, . Using the paths shown
in Figure 5, write

al2
f ETM'dX: % ETMdl_J ETM'dI.
—al2 Lo Ly

Applying Stokes'’s theorem to the integral oveg and
the surface impedance boundary condition to the integr
overLy gives

(57)

al2 0 (a2
J ETM'dX:iwlu‘Olu‘Cf J HyTM(Xayvz)dXdZ
a2 zoJ —al2

2ik [o

HyTM(Ovyaz)dZ

e

ik rarz

+— Hirm(X,Y,Ze) dX,
g 2

(58)

where . is the relative permeability of the material within
the defect andH,),, denotes the component bk tangen-

tial to the edge. Assuming that these field components ar

uniform across the flaw, integration with respecixtgives

k2a £ 4 2ik

My

a2 1 0
f Ery-dx=— f Hymm(0y,2)dz
—al2 o Zg

ika
+ 7HTTM(01yvze)' (59)
Writing Hymy= d4/ 9z and integrating with respect togives
0
J; HyTM(Ovyvz)dZ: lr//(ovyvo) (60)

Expressiorn(56) can finally be written in terms of the follow-
ing one-dimensional integrals:

1 7 ) cl2 .
Zg=—— kza—+2|kf H{"(0,y.0)4(0,y,0)dy
g r —cl2
ika (c2
—— | HY(0y,0Hm(0y,ze)dy. (61)
g —cl2

As for Zg, the incident field from the coil in the integrand of

Eq. (61) can be calculated, for a coil with axis perpendicular
to the conductor surface, using closed-form expressions

The potentialy is obtained by solving the Laplace problem
described in Section Il anH1(0.y,z.) can be found from
the potential. The first term in E¢61) clearly contributes to
AZ at the order of both the first and second terms in By.
The part which depends d¢ is a volume-dependent contri-

a

C. Evaluation of Zy

For defects whose dimensions are only a few times
greater tharns, the third term in Eq(3) is significant. Here,
we propose an approximate form for this term which we
denoteZ, after Kahnet al.® who first evaluated this term in
the context of a long crack in a uniform field. The develop-
ment is not strictly rigorous since the resulting expressions
ipvolve field values which are determined using thin-skin
assumptions, such as the relationship betweand ¢ of Eq.
(23).

Kahn-level contributions arise from the integral Bf
xH® over S, and the integral oveS—S,, in Eq. (47).
Consider firstly the contribution from the integral over
—S,,. This integral gives rise to two equal terms, one from
the surface on each side of the crack. If the surface imped-
ance boundary condition is used fBras well asE®”, the
integral overS—S,, vanishes but the boundary condition is
not in fact valid in the region within a few skin depths of the
crack opening. An improved approximation is obtained by
adapting a local solution for the corner region of the two-
dimensional long crack problemFrom this problem it is
gvident that thex component of the electric field can be

written as
-
x—al2

which vanishes fox=a/2, as indeed it should.

Substituting Eqs(50) and (62) into the second term in
Eq. (47), using Eq.(51) and integrating with respect ®
gives the following contribution t&Z:

— HY(kuydu| x=a/2,

Ex:ikHy[ 62

4 cl2

mo

H{(0y,0)Hy(0y,0)dy. (63

—cl2

This Kahn term contributes at the third level in E§) and
represents the effect of a highly localised corner field at the
surface of the conductor close to the crack mouth. An
equivalent term arises from the integration over the crack
faces, along with a contribution due to local field variation at
the crack edge.

Kahn-level contributions from the integral &xH®
over S, will now be determined. The development proceeds
as forZg up to Eq.(57). For the integration ovekL, the
surface impedance boundary condition is now modified to
account for third order effects. The relationship is supple-
mented by terms representing the corner field, as in(&2),
and the edge field, as in E) of Ref. 7. Hence for the local
electric field near the crack mouth,

bution which vanishes as the crack gape tends to zero. The

part which depends ok is related to current flow over the

faces of the defect—the factor of 2 reflects the presence of

the two crack faces. The second term in Ef) contributes
to AZ at the order of the second term in E§). It is related

to the current flowing over the base of the defect and van-

ishes as the defect gape tends to zero.

J. Appl. Phys., Vol. 82, No. 9, 1 November 1997
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and, approaching the edge of the créck,
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vide the full contribution taAZ at the order of the first two
< terms in Eq.(3). The derivation ofZy is not as rigorous but
it provides a good approximation to the third term in E3).

V. LONG CRACK
ar 0 The solution for a long, surface defect of uniform depth
is most readily obtained by Fourier transforming in the di-
rection of the line followed by the crack. For the purpose of
calculating the fields, let the crack occupy=0,—»<y
<— crack <, —d=z=<0, as shown in Figure 6, and l¢{v,z) be the
Fourier transform of/(y,z) in y. The solution of the Fourier
-d transform of Eq.(13), which vanishes az=—d in accor-
dance with Eq(21), has the form

W(v,2)=Av)sinfv(z+d)]. (69)

FIG. 6. A conducting half space containing a long, surface-breaking crackT_h_e CoefﬁCiemA(v) is determined_ from the bo_undary con-
dition at the crack mouth. Fourier transforming E&4)

conductor

yields
g WD = 202
E,rm= 1—erfa —ivik(z cos#+d)) 92 O—HyTM(v ,0) — (v)z,//(v 0), (70
z=
i elk(z cos—z,) wherea(v) is given in Eq.(32), and hence
T = (65 .
\/; Vik(z cos#—z,) E( 2) sinfuv(z+d)]
vl = .
where z, is the coordinate of the crack edge afids the v coshvd)[1+2(v/ik)U(v)tanivd)]
angle between the inwardly directed normal to the crack < A0 (0.0 (71
edge andz. The first terms in Eqs(64) and (65) represent yTMLU,E)
the unmodified surface impedance boundary condition andhe effect of incIudingHgﬁﬁM in the boundary condition

give rise to the terms of ordérin Z¢ . The remaining terms  given in Eq.(22) is now clear. It gives rise to the term

represent the non-Laplacian, locally varying field. Integrat- 2(v/|k)U(v)tanh@d) in the denominator of Eq71), which
ing overL now gives rise to the following terms in addition depends o, throughU (v).

to those of Eq(58): If Hy(v) is the Fourier transform o (y) in y, then

Fourier transforming Eq28) gives

4
_WHyTM(O:yyO)_ HtTM(Ovyvze)' (66)

o cosé

2
o) =AD0)42 - V()T
Combining the impedance contribution from these terms Hy()=Hy (v) 2ik V@W)h(v), (72

with that of Eq.(63) gives Zy: where ﬁy(v):ﬁy(o%o)' etc., andV(v) is given in Eqg.

4 (c2 T ; .

Zy=— — H(y')(O,y,O)Hy(O,y 0)dy (37). Substituting forys from Eq. (71) and making the thin
—cl2

o skin approximatiot
4 (c2 . g %ﬁ(i), (73)
—— | HO(0y,0Hyru(0y,0)dy e
To J_cp2 gives
1 (o2 1 ~ 1+2(v/ik)[U(v) +V ~
+;f o5 (0Y.OHm(0y.z)dy. (67) Ay ()= 2Ol V) TanTted) g, )
- 1+ 2(v/ik)U(v)tanKvd) Y
(74)
D. Summary

From Egs.(33) and(38) it is clear that, foru,>1, U andV
The change in impedance in an eddy-current coil due t@ye equal and opposite so that

a surface crack is given by
AZ=Ze+Ze+ 2, (69) 0 _ 1

O™ o0 d
whereZgis given in Eq.(52), Z is given in Eq.(61) andZy F2(0/K)U, - (v)tanfvd)
is given in Eq.(67). These expressions involve simple one- (75
dimensional integrals along the line of the crack mouth. The  The impedance change due to a long slot can now be
development oZg and Z¢ is rigorous and these terms pro- calculated by Fourier transforming Eq$2) and (61) using

HO ().
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TABLE I|. Experimental parameters.

160 |
o experiment; real part -~ Material Type Aluminium Mild steel
140 | © imaginary part {negative) a/Smt 1.667x 107 5.587x 10°
— theory -+
£ . i My 1 875
5§ ' former theory Defect Depth/mm 11.99 2.950.05
?g, 100 Gape/mm 0.410.08 0.33-0.03
§ Coil Inner radius/mm 3.015
:; 80 Outer radius/mm 5.46
g 60 Length/mm 2.94
3 lift-off/mm 1.32 1.29
g ol T eeememmmTh No. of turns 900
= bV g e Free-space inductance/mH 6.027
20F g% .o-== Resonant frequency/kHz 850
0
0 50 100 150 200
Frequency/kHz

cies above 50 kHz. The theory presented here prefid$

to within 5%, which is the level of experimental error in the
FIG. 7. Impedance predictions and experimental data for a coil centred ové€asurements. Note that the strength of the scattered field
a long slot in aluminium. The broken lines represent predictions made usingerm depends on the ratio of the coil diameter to the crack
Auld’s assumption that the tangential magnetic field at the conductor surfacgepth. As this ratio increases, the predictions of Auld’s
Is undisturbed by a surface defdsee Ref. 1 theory and the theory presented here converge. The effect of

omitting terms of order of the third term in E¢3) can be

Parseval’'s theorem. Note that if third-order contributions toseen in the over prediction of REL) at frequencies below

AZ are required, the approximation of Eg:3) should not be about 50 kHz. This dlsprgpancy be.tween' theory and experi-
: : . ment can be largely eliminated by including the Kahn level
used since it has a third-order effect.

terms in the predictions.
Theoretical predictions of the coil impedance change
due to a slot in mild steel, shown in Figure 8, agree with

xperimental data to within 10% foAZ|. The error is larger

In Figures 7 and 8, impedance predictions are compareﬁ1 : - . ;
. . . an for the slot in aluminium, and may in part be attributed
with experimental data from frequency scans for coils cen-

tred over long slots in aluminium and steel respectively.t0 the @fﬁ(;ulty associated with measuring expermen-
Predictions are made at the order of the first t\;vo termsin E t_aIIy. Itis I|I_<ely that the permeability of material near the
(3), involving the expressions faE and Ze given in Eqs %lot faces differs from that of the bulk as a result of surface

. 9 P . S F O =ds- damage occurring during the manufacture of the slot. In
(52 and (61). The experimental parameters are given in

Table I. In comparing theoretical predictions with data for apract|ce, it is the value of the bulk permgablllty Wh'Ch 'S
slot in aluminium, we show the improvement obtained bymeasured aﬂd used to r_na_lke the predictions of |mpec_lance
retaining the scat:[ered field terk(s), in Eq. (22). Predic- change. In Figure 9, predictions are shown for a system iden-
tions made using Auld's approxirﬁ;{\fér?in Which .this term tical to that of Figure 8 but with different values of material

is neglected, are shown as dashed lines in Figure 7 and reBgrmeablhty. The impedance change dependsupnin a
resent an over prediction of about 15%|ixZ| for frequen-

VI. PREDICTIONS AND EXPERIMENTAL DATA

100 F T T T T .
real part .

_____

0 .
-20 E
£ Q
£ -
9 0 g "®
P C
=] «
S S 200
S 60 g .
g g N
3 @ -300 | o i
e -80 E refative permeability =1 v >
E © experiment; real part —-_—-=25 oo SN
o imaginary part -400 ---- =50 LN
-100 theory N 1 b o - 100 .~:~~~
-500 A L L 'l b e
-120 N s . L 100 200 300 400 500
0 25 50 75 100 125 Frequency/kHz

Frequency/kHz

FIG. 8. Impedance predictions and experimental data for a coil centred ovefIG. 9. Predicted coil impedance change due to a long slot in materials of
different permeability.

a long slot in mild steel.
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netic conductors, since the magnetic flux tends to remain
within the conductor rather than pass into the air gap in the
defect, but is negligible in non-magnetic materials. This
work considers only the interaction between the electric field
and the defect. The solution is exact for circular coils centred
over the crack but predictions for coils offset from air-filled
slots in magnetic materials could be improved by including
the interaction between the magnetic field and the defect.
The impedance change in a coil is expressed as a power
series in the small parameteikland new forms for the first
three terms in this series are derived. They are expressed as

Impedance change/Ohm

real part

777 Imaginary part one-dimensional integrals along the line of the crack mouth.

These integrals can be evaluated quickly, taking a few sec-

-300 20 20 0 30 00 onds per point using a personal computer, and predictions
relative permeability have been compared with experimental data for coils centred

over long slots in aluminium and mild steel. Good agreement

FIG. 10. Variation in the predicted coil impedance change due to a long slolS observed.

as the relative permeability of the material filling the slot is varied.

complicated manner but from Figure 9 it can be seen thahCKNOWLEDGMENTS
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ance change are shown in Figure 10 for the defect of Figure

8 filled with material which is non-conducting but perme-

able. It is evident thatAZ| increases ag increases. This is

a consequence of the form of the term of ordér (the = APPENDIX: HALF-SPACE FIELD ANAYSIS BY

volume-dependent temnin Eq. (61). This result is consistent SCALAR DECOMPOSITION

with previous work which has shown that impedance predic-

tions for air-filled defects in steel are relatively insensitive to

the defect gape® It can be seen that this is the case byhalf space is non-conducting and the lower half space has a
putting u.=1 andu, large in Eq.61). For a typical crack in P ' ucting W P

which the gape is much smaller than the depth, the term 01|,|niform conductivityo. .The fiel_d is to _be expressed in. terms
orderk? is then likely to be much smaller than that of orderOf TE and TM potentials defined with respect to different

k in the first term of Eq.(61), rendering|AZ| relatively preferred Q|rectlons in the two regions. In the upper h"?"f
insensitive toa. space, region 1, the preferred direction is normal to the in-

terface between the conducting and non-conducting regions.
In the lower half space the preferred direction is tangential to
the interface. For convenience, the coordinate system is cho-

A theory capable of predicting the impedance change irsen such that the preferred direction in the conducting re-
an eddy-current probe due to surface cracks in materials afion, region 2, is the direction.
arbitrary permeability is presented. The theory is valid in the  In homogeneous isotropic regions the TE and TM poten-
high-frequency regime, in which the electromagnetic skintials obey independent equations but, because different pre-
depth is significantly smaller than the crack dimensions anderred directions are used in the two half spaces, cross cou-
the induced currents flow in a thin skin at the surface of thepling occurs between the respective modes at the interface.
conductor and at the faces of the crack. The effect of this cross coupling is embodied in &2 ma-

The electromagnetic field induced by an eddy-currentrix of interface transmission and reflection coefficients
coil in a typical conductor interacts with a defect predomi-which allow, for example, a TE mode to be reflected by an
nantly via the electric field. For a circular coil whose axis isincident TM mode and vice versa.
centred over the plane of a crack, the normal component of The mode coupling is built into a set of half-space scalar
the magnetic field is zero at the crack and the interactiorGreen’s functions that are defined below following a prelimi-
between the induced field and the defect occurs purely viaary analysis which determines the transmission and reflec-
the electric field. For a coil whose axis is offset from thetion coefficients. The coefficients are derived for an arbitrary
crack plane, however, there is some interaction between theource in the conductor using a two-dimensional Fourier
magnetic field and the defect. The effect of this interaction igransform of the field. Then the scalar Green'’s functions are
quite noticeable for slots with large gape in strongly mag-found as a special case by considering singular sources.

Consider the electromagnetic field in a problem domain
divided into two semispaces at the plane 0. The upper

VII. CONCLUSION
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A. Scalar decomposition Py N
( ¥o(u,v,2)=0, z<O0, (A12)

A2
Assuming a time dependence exppt), the electric 972 Y

field in the non-conducting region, region 1, may be ex- 2, 212 2, 2 L2 _
pressed using a TE potentig{ and a TM potentialy/ ;1016 Where k=(u"+v)™, y=(u"+v"—k%)™ and roots with
positive real parts are taken.
E(r)=iou[VXZi(r)—VXVXz4i(r)], z>0,
(A1) B. Internal source

wherez is a unit vector normal to the plane of the interfface  The precise nature of the coupling between the TM and
defined byz=0. Similarly, the electric field in the conduct- TE potentials at the interface between regions 1 and 2 will

ing region will be represented as now be established for a source within the conductor. The
) - R solution of Eqg.(A11), vanishing az—, may be written
E(r)=iou[VXXy(r)—=VXVXXs(r)], z<O0, .
A2 (u,v,z c’
i ( ) lf;l;( ) — C” esz. (A13)
wherex is a unit vector tangential to the conductor surface 1(u,v,2)

and p= pou, , Wherep, is the relative permeability of the The solution of Eq(A12) in the region above the source but
conductor. In terms of the TM and TE potentials, the magelow the surface of the conductor has the form

netic field in each region is given by

. Jyuv,2)] [a e P
H(r)=VXxXVXzyi(r), z>0 (A3) Jg(u,u,z) = g8ty €7 (A14)
and The first term on the right-hand side of E&\14) represents

the free-space solution in the conductor, #ieare source-

_ St _ L2 Soan . A
H() = VXV XXgp(1) =KV (), 2<<0. (A4) dependent coefficients="' or”. Theb' andc' are related to

Using Maxwell’'s equations it can be shown that thea' via reflection and transmission coefficients which are
- found by using the field continuity conditions at the conduc-
VeV (r)=0, z>0, (A5)  tor surface, Eqs(A8) and(A9). In some special cases there
is no cross coupling between TM and TE potentials at the
(V24+K2)V2yy(r) =0, 2<0, (A6) ping P

conductor surface but in general the possibility must be al-

where it is implicit that they; carry either a single or double lowed for. This allowance can be made by defining the fol-

TM potential, respectivelyi,=1,2, and(A14):
. 0 . d [b'}_rn I'po|[a’ (AL5)
V,=V—Xx X and V,=V-z o7 (A7) b” Iy, Ty a’l’
Equations for the coefficients which couple the TE and c’ _ T Tifa’ (A16)
TM potentials at the interface between regions 1 and 2 are [C"| | T, Tp/l@")

found through consideration of the field continuity condi-

tions at the interface: where thel';; (i,j=1,2) are reflection coefficients and the

Tj; are transmission coefficients. Using E@52) and(A4) it

ZXE(r))=zXE(r,), (A8) s found that
2 H(ry) =2x H(rp), (A9) Tiuc Hivre’=pyla’ b= peuv[a’ b, (ALD)
s I "__ 2_ L2 " "
wherer, andr, represent limiting values of the field coor- ive’ —iukc”= pu(u—k9)[a"+b"], (A18)
dinates at the interface as it is approached from above and iy xc’=uv[a’+b’']— yk¥a’—b"], (A19)
below, respectively. These equations express the continuity , s o
of tangential electric and magnetic field components across UxC'=—(u“—k?)[a’+b"]. (A20)

the boundary. The coupling coefficients are most convegypressing the solution of these equations in the form of
niently found by using the two-dimensional Fourier trans-gqs (A15) and (A16) gives

form with respect to thex andy coordinates. Define
P Y DI'1= — yk(u?—K?) + w, (y?u+k%?),

. 0 =] . (AZl)
F(u,v,z)=J f F(r)e '(W+wdxdy, (A10) DI' o= —2u, yK2uv,
DI';;=-2 uv,
whereu andv are Fourier space coordinates. Transforming 21 eV (A22)
Egs.(A5) and (A6) using Eq.(A10) reveals thaty; and i, DI 5= yk(u?—k?) + u,(y?u?+k?v?)
obey the following second-order differential equationgin and
& = 2 y2u(u—k?
(—2—K2> 1(u,0,2)=0, z>0, (A11) DT = — 2 U=k
0z 1k
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2, Yk (UP—K?) i,j=1,2, allows the transformation of Eq#28) and(A29),

DTy= » ; (A23)  giving
2 + u®—k2 92 (Gi(2.20) Gidz,29)] [0 O
DT, e yu(y -MrzK)( ), (_2_K2> >1(2.20) G1d2.20)| 0
1K 9z Ga(z,20) Gplz,29)] (0 O
(A24) . - (A34)
DT, = _ 2R Uy prie) (0 K) N ) _
2 i ' ( 9 2) G11(2,29) G12z,29)
where 022 _é21(Z,Zo) ézz(Z,Zo)_
D=k(y+ u k) (U?>—K>?). (A25) 10
. =—68(z—zy) ,  z<0. (A35)
Note thatl",, can be written 0 1
2u,0%k? Using the same two-dimensional Fourier transformation,
Ip=1+ —5—, (A26)  Egs.(A31) and (A32) become
which demonstrates clearly that the nature of the reflection at éij(z,zo)= Kzaij(z,zo), z>0, (A36)
the boundary reduces to a simple image when the spatial ,
. - - . = (9 =
frequency in they direction is nugatory. Gij(z,29)=— (ﬁ_ 2) Uy(z.20), 2<O0. (A37)
The reflection and transmission coefficients given above
C. Scalar Green'’s functions will now be used to construct half-space Green’s functions
In principle, a solution for they; in the form for the potentials. The form dB;; must reflect the presence

of the singular source at=z,. Let G, be an unbounded

(1) :f Uaa(r,ro)  UsaAr,ro) |[j'(ro) dro (A27) domain scalar Green’s function which exhibits the following
Po(r) Uoi(r,ro)  Uso(r,ro) [Li"(ro)] " 0 behavior:
is sought. However, for the specific crack problem at hand, a ﬁéo 360
surface integral is to be formed using Green’s second theo- |— 1z =-1, (A38)
rem which means that the precise forms of the volumetric z=1z5+ z=24-

scalar source$’(r) andj”(r) are not needed. The coupled = ~ B
Green's functions required satisfy [GOJZ:ZoJf_[GO]Z:Zo—_O' (A39)

Gu(riro) GuaAriro)| |0 0O The general solution fo&, is of the form
2 = , z>0, (A28)
Go(r,rg)  Goyr,ro) 00 - A(y)e” 12720 7>z,
(V2+k2){611(r,r0) Glz(r,ro)} o= B(ye"* 2, z<zy (A40)
Gaxriro)  GaoATiTo) Applying Egs.(A38) and (A39) to Eq. (A40) yields
1 0 ~ 1
=—68(r—rgp) o 1l z<0, (A29) GO:Z e Mz—zl (A41)
with The source term contained é“ is, therefore, given by Eq.
lim G;;=0, i,j=12. (A30) (A41). Comparing Eqgs(A41) and (A32) with Eq. (A14)
[r[—ee allows the deduction that
The functionsU;;(r,ro) are related to the Green’s functions 1
I —alf— Yz
by a'=a 27 (2=KD) e”% (A42)
Gij(r,ro)==V3U;(r,ro), >0, (A31)

for a singular source at, wherezy<<z. In addition to the
Gjj(r,ro)= —V)Z(Uij(r,ro), z<O0. (A32)  singular term, the;; contain non-singular terms which rep-
resent the reflection, at the conductor surface, of the outgoing
“wave” from the source. From EqgAl14)—(A16) and Eq.
éA41) it is found that

Imposing the same interface conditions on thg(r,ro) as
apply to their corresponding potentials makes the(r,r)
become, in effect, the potential due to a singular sourc

atro. C~~511(Z,ZO) C~~512(2,20)
Defining = =
G21(2,29)  G24A2,2p)
Gii(z.2 =J f Gij(r,ro)e X~y =Yolgxdy, 2 Ty T
|]( 0) P Ij( O) Y, __ K2 , 11 12 eV(Z‘*'ZO)’ Z>O, (A43)
(A33) 2y(U"=K%) [Ty Tp
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G=11(Z,Zo) 512(2,20) These functions satisfy the field continuity conditions on the
interface between the two regions.

10
0 1

'y FIZ}ey(z+ZO)], 7<0.

e 7‘2720‘ +
21 1—‘22

G21(z,20) GoaAz,2)
1
= 2y
(A44) 1B. A. Auld, S. R. Jefferies, and J. C. Moulder, J. Nondestruct. Exal9
(1988.
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11t can be shown that
2

30 K G0
Hyrm(U,0,2)= 02 Hy’(uv,2),

where IfIST)M(u,v,z) is the two-dimensional Fourier transform of
H§,'%M(x,y,z). In the thin-skin limit, the spatial frequenay is typically

éij(U,U,Z,Zo):_(Uz_kz)gij(u,v,Z,ZO) 7<0.

L~J11(2,20) L~J12(2,20)
Usi(2,20) Upz,20)

o 1 Ty T
T 29(UP=K%) [Ty Ta

}eﬂ”zw, z>0, (A46)

U1x(2,20) Uix2,20)

Uai(z,20) Uapiz,20)

e '}’lZ_ZOl

B 1 10
T2y k) ||lo 1

ry T'p much smaller thak. Puttingu?<k? in the above gives Eq73).
+ e"zt)} - 7<(, (A47) 15R. E. Beissner, J. Nondestruct. EvaB, 175 (1994.
[y Ty 163, A. Stratton Electromagnetic TheorgMcGraw-Hill, New York, 1941.
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