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A method is presented by which series solutions for the impedance change in an eddy-current test
probe due to closed cracks in a non-magnetic, conducting half-space can be derived at low
frequency. The series solution is applicable for flaws whose dimensions are much smaller than the
electromagnetic skin-depth. The problem is formulated using an approach in which the flaw is
represented by an equivalent distribution of current dipoles. The electric field scattered by the flaw
is then written as an integral, over the flaw, of the product of the dipole density distribution and an
appropriate Green'’s function. Terms in the series expansion for the dipole density are calculated by
solving the integral equation at each order in the chosen small parameter, using perturbation theory
and a dual integral equation method. The impedance change due to the crack is then calculated from
the dipole distribution using the reciprocity theorem. Example solutions are given for semi-circular
surface-breaking cracks and for long, uniformly deep surface-breaking cracks. Results are compared
with other analytical solutions and the predictions of an independent numerical scheme, and very
good agreement is observed. 96 American Institute of Physids$0021-897@6)08418-9

I. INTRODUCTION andl is a characteristic flaw dimension. At lowest order, the

. L , fields can be derived from a potential satisfying the Laplace
_ The detection and characterization of flaws in conduCtyqation, and higher order terms may be found using pertur-
ing material is !mportant for the safe operation of many criti-\,4tion methods. This means that, for defects of simple ge-
cal structures in, for example, the nuclear power and aersmery such as sub-surface spherical inclusions or surface-
space industries. Eddy-current inspection methods, in WhicQyeaing  hemispherical indentations, familiar analytical
the electric current is induced in a test-piece at a fixed frégq)tions can be used to determine the eddy-current distribu-
quency by an excitation coil, are commonly used to detecfio, The simple algebraic expressions obtained theoretically

flaws such as cracks or inclusions by observing changes igy 14 he useful for probe calibration using a particular flaw
impedance of the coil. The detection of a flaw is stralghtfor—geometry_ Low-frequency operation is also required for sig-

ward in comparison with its characterization, which requireSyisican field penetration into the conductor, which is particu-
detailed understanding of the relationship between observqg”y important in the detection of sub-surface flaws.

signals and flaw geometry. _ _ An early contribution to low-frequency eddy-current
The literature concerning eddy-current inspection at IOWmodeIIing is that of Burrow’s who estimated the impedance

frequencie_s is _relatively Iimit_ed, probably due to the fact th?tchange due to a spherical cavity in a conductor by modelling
flaw detection is far from optimum when the electromagneticy,o cavity as a dipole source. Another approximate method
skin-depth,d, is larger than the dimensions of the flaw. The .5 presented by Kincaiet al2 and Kincaid who used the

skin-depth is given by static form of Maxwell's equations to derive the scattered
electric field due to an ellipsoidal void in a conductor for a
2 1/2 . . . . e
:( ) 1) uniformly applied electric field. The low-frequency limit in
©®oo the case of a uniform applied field was also considered by

Auld et al* who adopted two different approaches. The flaw
where w=2xf is the angular frequencyy, is the perme- was modelled as a flat, hemi-ellipsoidal void breaking the
ability of free space andr is the conductivity. There are, conductor surface and, firstly, the scattered field was treated
however, both theoretical and experimental advantages ias that produced by an infinitesimal dipole located at the flaw
working with relatively large skin-depths. Theoretically, so- centre with strength related to the size and aspect ratios of
lutions for the electromagnetic fields may be sought in thehe ellipsoid. Secondly, the analogy between eddy-current
form of a series expansion in the small paramé&iewhere  flow in the low-frequency limit and fluid flow in an incom-

the wave numbek is defined pressible fluid was exploited.
A more thorough treatment of low-frequency eddy-
i 1+i current theory has been given by Nair and Rbsmlike the
k=Viougor= 5 ) approximate methods described above, Nair and Rose con-

sidered the low-frequency asymptotics of a general formula-
Y - _ tion valid for arbitrary frequency. The first few terms of a
, Electronic mail: n.harfield@surrey.ac.uk low-frequency asymptotic expansion were derived for the
Permanent address: Nuclear Engineering Research Laboratory, The Uni- . L . . .
versity of Tokyo, 22-2 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki€l€Ctric fields induced by an external current distribution

319-11, Japan. above a conducting half-space containing a flaw. From this
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solution the flaw-induced impedance change was calculatedontains a crack lying in the plane defined ky 0. The
Example solutions were given for a number of sub-surfacescattered electric fielddenoted by the superscrips)) can
and surface-breaking defect geometries. be expressed in integral form in the following way:

The solution method presented here is also developed
from a general, rigorous formulation valid for arbitrary fre-
guency. The crack is represented by an equivalent distribu-
tion of current dipoles and the electric field scattered by the
flaw then expressed as an integral over the flaw of the scalavhereG(r,r’) is a half-space dyadic Green’s function for a
product of the dipole density distribution and an appropriatesource in the conductor and the primed co-ordinates are
Green’s function kernel. Terms in the series solution for thesource co-ordinates. The total electric field may, therefore,
dipole density distrubution are calculated by solving the in-be written as the sum
tegral equa;Lon at each orderkhusing a dual integral equa-
tion method? The resulting series solution for the dipole i : / N o
density distribution is then used to calculate the impedance B(n=E >(r)+|w,uof G(r.r).p(r)ds’. ©
change via a relation derived using the reciprocity theofem.

The structure of the paper is as follows. The problemThe Green’s function ensures that the electric field satisfies
formulation is described in Sec. Il and the series solution idMaxwell’s equations in the quasi-static limit and that the
described in Sec. lIl. In Secs. IV and V specific problems ardangential components of the electric and magnetic fields are
solved using the formulation of Sec. Il, namely, the problemscontinuous at the air-conductor interface. An excellent dis-
of a semi-circular surface-breaking cra¢®ec. IV) and a  cussion concerning the use of dyadic Green’s functions in
long, surface-breaking crack of uniform deg®ec. \J. The  electromagnetic theory is given by TaEquation(6) is ap-
results of these calculations are discussed in Sec. VI anpropriate for a three-dimensional system. In the specific ex-
compared with other analytical solutiofis the case of the amples which follow, the two-dimensional form of E®)
semi-circular crackand the results of a numerical schemeWwill be solved by a perturbation method once suitable ex-
(in the case of the long cragkConcluding remarks are made pressions for its components have been found. The incident
in Sec. VII. electric field is known. The forms of the dyadic Green’s
function and the current dipole density distribution must be
considered.

The dyadic Green’s function appropriate to this problem

Define an ideal crack as a crack which is closed bufhay be written as follows:
allows no passage of electric current. An ideal crack then
produces a discontinuity in the tangential component of the G(r,r")=Go(r,r") +G;(r,r')+ %VXEV’XEV(r £
scattered electric field which may be represented in terms of ' ’ ' K o
a surface distribution of current dipolBg=ph, wheren is )
the unit vector normal to the crack:

E(S)(r)ziw/LOLOG(r,r’).p(r’)dS’, (5)

Il. FORMULATION

where Gy(r,r') is the free-space dyadic Green’s function,
G;(r,r") represents the image source and the term containing
V(r,r') deals with the effect of the air-conductor interface.

The free-space dyadic Green'’s functi r,r'), is given
where the superscripts indicate limiting values as the crack iBy P 4 (1) g

approached from one side or the other, &hds the differ-
ential operator tangential to the crack face. We adopt the

convention thap is positive for dipoles directed towards the Go(r,r')=
positive side of the layer. The dipole distribution effectively

acts as the source of the scattered field. This means that thghere| = xx+yy+ 27 is the unit dyad and
scattered field can be written in terms of an integral equation

with a Green’s function kernel which will be solved fpr elklr=r'|

The impedance change due to the presence of the crack, ¢(r,r’)=m.
AZ, will then be calculated by means of a relation derived

from the reciprocity relationship

P 1
E —E =—;th(r), 3

|+E12vv)¢(r,r'), €)]

(€)

The Green’s function representing the image source,
4 Gi(r,r'), is given by
|2Az:—f EV.pdS (4)
So

Gi(r,r')=

1
where the superscripti) indicates the incidentapplied I _kTVV )gb(r,r ), (10

field and S, is the open surface of the crack. The integral

equation formulation lends itself to solution using perturba-wherel’=XX+yy—2zz and, for a system in which the air-
tion methods and leads to an asymptotic series solution foronductor interface occupies the plarve0, r"=r’—227' is
bothp and AZ. The field equations will be considered ini- the co-ordinate of the image of the point whose position
tially for an arbitrary current source and a conductor whosevector isr’. The two-dimensional Fourier representation of
interface with air is defined by the plar'e=0 and which  V(r,r’) is
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’ 1 * = (1 1 (i) 02 2 ’ ” ’ /
= I Bt 100+ £z [ Lo+ ar.rmipeds
—ylz+2' [ +iu(x=x")+iv(y—y’ 2
xa 7 x=x")+iv(y=Y ) gy dp, (11 _‘9_2f V(rrp(r)dS =0, reS, 17
oy S

where, taking roots with positive real pax= Ju?+v? and 0 , R o )
y=uZ+v?—K2 andu andv are Fourier space variables. Where J(r)=oE®(r)-X. The definition of the mixed
From Eq.(11) it can be shown that a term of orde? is the ~ boundary value problem is completed by noting that, in the

lowest order term inv(r,r’): remainder of the plane of the crattke part not occupied by
the crack itselfthe boundary condition on the magnetic vec-
1 1 1 1 1 K2\ "2 1 1 k? tor potential in the conductor is
—_— e = — — p— ~— — — _|_
K Y K K «? K 22 IAL(T)
k2 T:O, reSl, (18)
C2k% whereS,; denotes the part of the crack plane in the conductor

) o , . not including the crack itself.
While the contribution ofV(r,r") must, in general, be con- Now, the dipole density may be related to a jump in the
sidered, it will be shown that this term does not feature in thg,qrmg| gradient of the vector potential at the crack via Eq.
two-dimensional infinite crack problefone of the examples (1), |n finding this relationship it is observed that the vector
considered later o _ _ potential of a vertical crack with its normal in the
The first step in determining the current dipole densityy_girection has only x- and y-components. The
distribution,pz is to rewrite Eq.(6) in terms of a magnetic y-component arises solely from coupling betweensthand
vector potential A, which represents the scattered field: y-components of the vector potential at the surface of the
1 conductor by the part of the Green’s functia?", given by
E(r)=ED(r)+ ——(VV+k2l)-A(r). (120 Ea. (1_5),_ which contqinsV(r,r’). Since bqth the incidgnt
Moo electric field and the field reflected at the air-conductor inter-
| ing the L diti he di Lace are continuous across the crack, it is found that the
mposing the Lorentz gauge condition on the divergence o iscontinuity in the tangential electric field across the crack

A leads to the following equation which is valid in the con- depends only on the normal component of the vector poten-
ductor (but off the crack

tial:
(V2+k?)A(r)=0. (13 1 AAL(T)
Ed(Nlimo, ~Ei(Nlxzo_ = —— Vil —
; .11 + Moo axX | _
The formal solution of Eq(13) is x=0,
IAK(T)
A<r>=uof GA(r,r').p(r')ds, (14) T X - 19
So x=0_
wherep is a surface dipole density distribution. The dyadic Comparing Eqs(3) and(19) gives
Green'’s function for the vector potential is given by - 1 [ dA(r) AAL(T) )
pr)=—— -
GA(r,r ) =1(r,r")+1"¢(r,r") Mo\ X o X Il
1 X i 3 2 dAL(r) (20)
+ FVXZV XzZV(r,r'). (15 g X x:0+,
Equation(12) becomes where the last step in EQRO) is a consequence of symmetry.

Equationg17) and(20) together define the conditions which

e 1 ) Av o1 e must be matched by the magnetic vector potential on the

E(N=EY(N+ _(VV+k) SOG (r,r’).p(r’)ds’. crack. Once the vector potential has been determined, the
(16) current dipole density on the crack is found from E20).
The change in probe impedance due to the flaw can then be

By inserting Eq.(15) into Eq. (16) and taking care to ex- calculated using the relation given in Ed).
change integral and differential operators only in such a way
as to leave the equation unchanged, it may readily be verifiedl. SERIES SOLUTION
that Eqs.(16) and(6) are equivalent. . In the static limit, the incident electric field at the crack

The crack is assumed to act as a perfect barrier to the

flow of eddy-currents which means that the normal compo-'s zero and, consequently, the term in the series expansions

nent of the electric field at the surface of the crack is zero!cor p of zero order ink, py, Is also zero. Thus the series

Forming the scalar product of E¢L6) with the unit vector expansion forp starts at first order k.
normal to the crack face, gives p(r)=pya(r)+pg(r)+ ... (21
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and, consequently, extended by assuming that they are evenr.iffhis ensures
AZ=Zo+Zst . ... . 22) that, over the half-range<0, we obtain the same solution as

we would from Eqs(18) and(25). Equation(25) becomes
As mentioned in the introduction, solutions f@A, /dx (and

2
hence forp,) will be found by ordering the governing equa- J<Xi>(r)+ izf (rr)p(r')dS' =0, reCy, (26
tions in terms of the small parametdrso that, at each order, IX"Jcq

the individual terms in the series expansion foare each a that is

solution of Laplace’s equation. This is the fundamental sim- '

plification afforded by the perturbation method of solution. (i) PPALN)
At each order ikl we will define a mixed boundar ho(+—7==0, 1eCy, @7
y value x IX
roblem
P and Eq.(18) becomes
(1) .
ry+ ———=—=0, re crackdomain 23 AAL(r
) pw) € (23) x( ):0’ feCy. 29
ox
A.2,(1) ) - .
™ =0, re crack plane excluding crack, (24) We can now order Eq26) explicitly. Write

)y gp=
where 7 and. 7, are the terms of appropriate order in the I+ 72p=0 @9

series expansion representations of the current soﬂﬁbe where
and thex-component of the magnetic vector potentig].

: : o 9
For simple geometries, this mixed boundary value problem %= —zf ds qb(r,r')} (30
lends itself to solution using a dual integral equation ap- IX"Jcq x=x'=0
proach. f E
From Eq.(17) it can be seen that computation of the first and, from Eq/9),
two terms in the above series will, in general, be relatively . 1

straightforward compared with the calculation of higher or- Tko= 4alr—r'|" (31)

der terms. The reason for this is that the term involving

V(r,r') is of orderk? at lowest order and not, therefore 1he€NPk: andpyz can be found by solving, respectively,

involved in the calculation of the first two terms in the series  J,:1+ . %,0p,21=0 (32)
of Egs.(21) and(22), simplifying the computation dramati- ,
cally. In the example of the semi-circular, surface-breaking — Jk2t-ZkoPk2=0 (33

crack given in Sec. IV below, only the first two terms in w;th Eq. (28).
these series are found. In the case of the long, surface- For a uniform incident field directed normal to the crack
breaking crack of uniform depth treated in Sec. V, howevergace,
it is possible to proceed to higher order more easily because

there is noy-dependence in the fields and the term contain- 3D =ikH,e¥2 = Ho| ik + (ik)?p| cosg] + (ik)® 26020
ing V(r,r') in Eq. (17) vanishes for all orders d. X 0 0 P 21 P

+.-0, (34
IV. SEMI-CIRCULAR, SURFACE-BREAKING CRACK

We will now compute the first two terms in the series where we have used cylindrical polar co-ordinates, writing
expansions fop and for AZ for a semi-circular, surface- z=pCo0s9, SO
breaking crack. Ja=ikH,q (35)
A. Dipole densit
P y Ji2=—k?Hgp|cosd|. (36)
Equations(32) and (33) may now readily be solved by not-
ing the link with the magnetic vector potential through Eg.
(27) and then solving fo¥. 7,/ 9x using a dual integral equa-

As mentioned above, the term involvin(r,r’) in Eq.
(17) does not enter the calculation of the first two terms in:
the series forp andAZ and, for these orders, we can write

T " . tion method described in Ref. 6, especially Chap. 4. It can
+ f [o(r.r)+(r,r)]p(r)dS'= (25 then be deduced from E¢RO) that
This means that, for these low orders, the half-disc crack can  pyi(p) = —4HyikVaZ—p?, (37)

be transformed into a disc problem by extending the range of
integration in Eq(25) to embrace a circular regidd,. Simi-
larly, Eq.(18) is then applied to a regio@, consisting of the

where a is the radius of the semi-disc shaped crack. The
second order incident field is

entire plane of the crack excludir@,. To extend the region Ji2(p,8)=—k?Hgp|cos|

of integration in Eq.(25), the variablez’ is replaced by

—z' for that part of the integration involving the image — —KPHp —_—E (— l) coS{ZVG) (39)
Green'’s function. The range of the functicmfg andp(r) is Ho Ty=1 -1 '
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Similarly expanding the second order dipole density as

©

pe(p,6) = ngo Pr2(p)cogné) (39)

and solving Eq(33) and Eq.(28) gives, for the first term in
this expression,

Hok? 2

P

2 2

yac—p+ —In
P

Only this first term in the expansion of EQY) is required to

Pro= a (40)

77

I+ izz+k2 f [S(r,r")+ ¢(r,r")]p(r')dS
X é,x SO il 3
=0, reS,. (46)

Equation(46), together with the condition of Eq18), de-
fines the mixed boundary value problem in this two-
dimensional case. For this geometry, image theory is appli-
cable at all orders, enabling extension of the region of
integration in Eq.(46) to include the image of the crack
obtained on reflecting the cracked conductor in the interface

calculate the contribution to the impedance since the firsplane. This extension is achieved, as for the semi-circular

order incident field is independent éf The first two terms

crack, by substituting-z’ for z' in the part of the integrand

in the series expansion for the dipole density are thus givenf Eg. (46) which involves the image Green's function. Eg.

by Egs.(32) and(33).

B. Impedance

(46) becomes

ID(r)+

az
—2+sz $(r,r')p(r')dS' =0, reCy (47
ax Co

The impedance change due to the crack will be calcuwhich, along with Eq.(28), defines the mixed boundary

lated by means of Eq4) which is, in terms of the current
source,

1 )
AZ=-—5 fSOJi'Rp,e)p(p,a)ds (42)
and, for the first two orders,
1
Zk2= - mf%Jklpkld S, (42)
1
Zk3: - G__IZJSO[JKZpkl‘l‘Jklka]dS. (43)

Evaluation of the integral of Ed42) is straightforward, giv-
ing
1[Ho\%4 , .
Zkz——;(l—> §k a”.
Calculation of the first term in Eq43) is also straightfor-
ward. In order to evaluate the second term in ER), the

(44)

value problem for the long, surface-breaking crack of uni-
form depth in a half-space conductor.

For this long crack geometry, it is possible to integrate
out they’ variable in the Green'’s functio#(r,r’) given by
Eqg. (9). The appropriate two-dimensional Green’s function,
representing an outgoing wave with a boundary at infinity, is
given by

° i
|” atie=rpay —g o,

where

Ir=r'|=J(x=x")2+(y—y)?+(z—2')?

r=\(x—x")?+(z—2')?

andH{Y is the zeroth order Hankel function of the first kind.
The Hankel function of the first kind is the correct Green’s
function in two dimensions for outgoing waves with a
boundary at infinity. It exhibits a logarithmic singularity at

expression of Eq(40) can be used since, for a uniform inci- the origin, as is required in the two-dimensional case. Equa-
dent field, there is no contribution from higher order terms intions (47) and (28) may now be written

Eqg. (39). We obtain

(49)

This concludes the calculation of the first two terms in thewhere

low-frequency series expansion for the impedance change

due to a semi-circular, surface-breaking flaw.

V. LONG, SURFACE-BREAKING CRACK
A. Dipole density

Consider a crack of infinite extent in thedimension

_ 3?
10, 2)+ (—2+k2 A(X,2) =0, |7<d,
IX x=x'=0
(48)
i rd
AX(X,2)=pog f HSY(kr)p(z')dz, (49)
—d
and
A (X,z
—X( ):0, x=0]z|>d (50

oX

with uniform depthd so that the crack surface is describedfor the specific geometry in question. We will proceed to

by x=0,—d=<2z=<0. Both the crack geometry and the inci-

dent field are now independent gfwhich means that the
dipole density is also independent wpf Integration by parts
shows that the term containingin Eq. (17) vanishes, leav-

ing
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solve these equations faA, /dx from which the dipole den-
sity can be deduced using E@QO).

The form of the series solutions obtained for the dipole
density and impedance change is dictated by the form of the
low-frequency asymptotic expansion of the Hankel function.
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The asymptotic expansion of the Hankel function of the firstThe terms (#p),ai, « and (4p),s are bracketed since con-
kind for small argument is found from Ref. 12, Egs. 9.1.3,tributions to them both arise fron¥, 2, \pe. The ordering

9.1.12 and 9.1.13:

2i 2i 2i(z\2
HY(z)= %In(%) +(l+ %) - ;I(g) In(g)

2i(y—1)\(z\?
—(1+T)(E) + ...,

wherey is Euler’'s constant. From E@51), a series solution

for p of the following form is anticipated:

p=n§0 [ n(K) + 70(K)],

whereu,(k) =a,k"Ink, 7,(k) =b,k" anda,, andb, are con-
stant coefficients. The terms in this series obey the following

ordering criteria®
(k) _ Mn+1(K) o
=0 pn(k) O n(K) ’

sincek"/ (k"In k)—0 andk"*1In k/k"—0 ask—0.
It is now possible to order Eq48). Write

lim 0, lim

I+ 2p=0, |z]<d,
where
2 -
P | R '—Jd dz'H§" (kr)
) x> 4)_q 0 X0

The way in which Eq(55) is ordered depends on the form of

(51)

(52

(53

(54

(59

Eq. (51). Substituting into Eq(55) for H{" from Eq. (51)

and performing the double differentiation leads to the fol-

lowing definitions:

o A [
LKoO= 277 4 VA (Z_Z,)z,

, k? (d  [(Klz—2Z'|
~%k2|n kE_E _ddZ In 2 ,
3 i ik2 (o
Fe=|1+ ;(2’)/4-1) ?fiddz .

The terms%yoin k» Zkiin k and %1 are zero. For a uniform

incident field directed normal to the crack face,

' _ ik)?
30 = ikH ez = H, ik+(ik)2|z|+(2,) |2)?
(i* 4
+ 31 |Z| + ...,

a simple power series expansion. It is found that, up to term
of orderk® in the series solution fop, the ordering of Eq.

(54) results in
Juit Ziopa=0,
Jeo+ Zope=0,
(ZP)k3n kT ZkoPidin k=0,
Jiet (ZP)yet Zyopys=0.
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(56)

(57)

(58

(59

(60)
(61)
(62)
(63

allows the Helmholtz problem of E¢54) to be dramatically
simplified. Equations(60) to (63) essentially redefine the
problem at each order ik so that the individual terms in the
series expansion fqy are each a solution of Laplace’s equa-
tion. This simplification is fundamental to the perturbation
method of solution. From Eq$60) to (63) it is clear that the
first four non-zero terms in the series expansiondare

P=Pkt+ P2+ Pr3in kT P3+ - ... . (64)

We proceed to find these terms by linking E(0) to (63)
with Eq. (23) at each order and using the dual integral equa-
tion method of solution given in Appendix A. From Egs.
(60) to (63) we identify

Jxa= podkt, (65)
Te= podiz,s (66)
@i k= mo(-ZP)kdn ks (67)
J@= pol dis+ (2p)al, (68)
and
(fg} = Ziopyi- (69)
d

The following solution, derived in Appendix A, is found:

9 A(X2) 2 (= [dft Z(W) —ux
ax Wfo fo fo\/tz—wzt%(tme

X cogzu)dw dt du (70

The terms in the series solution fprare found by evaluating
Eqg. (700 for each order using the appropriate “current
source” given in Egs.(65) to (68). The solution forp,:
proceeds as follows. From Eq®5) and (59),

Ti(2) = poHoik. (7D
Substituting into Eq(70) gives, for the inner integral,

ft 1 q T
—_— W: —_—.
0/t2—w? 2

Integration with respect tbin Eq. (70) is then performed by
means of a simple change of variable and a standard result
given in Ref. 12, Eq. 11.3.20, yielding

( 9. Ay

(72

= uoH idewMe‘“"cos(zu)du (73
X a Moo 0 u .

glow write cosgu=Re(e”?") so that

4.4 »J,(ud
( X) = uoHoikd Re(f %e‘gudu), (79
k1 0

oX

where {=x+iz. Using another standard integrdRef. 14,
Eq. 6.623 no. Bgives

9.y
X

k1l
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from which it is simple, using Eq.20), to find
Pri(2)=—2Hgik Vd?— 2. (76)

This highest order term in the series expansiop tlehaves ~This may be solved by means of the standard integral given
as expectedp,: is even inz and tends to zero at the crack In Ref. 12, Eq. 11.1.1. The following is obtained:

fdt3J0(tu)dt. (86)
0

edge. 3 o
The calculation ofp,2 proceeds similarly; by evaluating f 3 (tu)dt= — d 2 2k+1)
Eq. (700 with “current source” 7,2. From Egs.(66) and u F( D=
(59), F( — )
Jel2) =~ Hok?l 77 X Ticrs) et (87
and the inner integral of Eq70) is now The reciprocal of the gamma function,I'1£), is an entire

function which possesses simple zeros at the points for

J dw=t. (79) which z is an integer less than or equal to zero. This means
0t2—w? that 11'(—1) is zero and hence all terms in the series for
which k=2 vanish. Only the first two terms of the series

The remaining two integrals in Eq70) are evaluated by need be considered, therefore, Equatief reduces to

noting that in the plane of the craek “*=1 and reversing

the order of integration. The resulting integral(Ref. 14, f 3 _ d_3 re-1
Eq. 6.671 no. 2 o Dh(tWdt= s gy (ud)
” 1 3r(0)
tu)coqgzu)du= , Z<t, 79 )
fo J(tu)cogzu) N (79 r(4) ———J(ud) (89
which yields Now I'(3)=2,I'(4)=6 and
p 1
9. Ay 2/.Lok2 f (
= dt, z<t. (80) I'(—1+¢
( 2 k2l _g vt Iimsﬂo%=—l,
The integral of Eq(80) may be evaluated by the change of (F(s))
variablet=z cosh x. From Eq.(20) we finally obtain which means that
2H k2 LR p d3
Pea(2) = — d{vd —Zt g —— fo 3 (tu)dt= S5 la(ud)—J(ud)]. (89

(81)

In order to find the termp,s|, , andps, the current sources
Zx3n k and Zs are required. The details of their calculation
are given in Appendix B. It is found that

The only integral in Eq(70) which remains to be evaluated
is that with respect tau. This is performed by defining
{=x+iz (as in the case gf,1), using the standard integral
of Ref. 14, Eq. 6.623 no. 3, and taking the real part of the

) moHoikd? (kd result. Using Eq(20) gives
Jén = In{ |, (82 . |
Hoik® ———f 5 imw\ Z2
. p3(z)=— d—z9d*| y+ =——=|—=|. (90
,LLOH0| (K 2 6 2 3
Fie= || 1+ y— | = 22 (83 _ . . .
' 4 2 To summarise, the equivalent current dipole density on a

two-dimensional surface-breaking crack has been found, in
the low-frequency limit, as an asymptotic series whose first
four non-vanishing terms are given in EdZ6), (81), (84)

d2./d2— (84) and (90)

Lastly, pys is found by evaluating Eq(70) for the current
source given by Eq(83). The first term in 73 has no

In calculatingp,asy, « the integrations follow as fop,: since
Zx3n « has noz-dependence:

Hoik® . (kd

Pw3in k= — 2

B. Impedance

z-dependence and the integrations follow as figr. The Equation(4) becomes, for this geometry,
second term, however, leads to integrals which have not been _
dealt with previously. The inner integral in E€0) for the AZ=——>5 I (2)p(2)dz (92)

second term in Eq(83) is easily evaluated:
It can readily be deduced from Eq&9), (64) and(91) that

2
ftW_dW: i (85)  thefirst four non-vanishing terms in the asymptotic series for
0t2—w? 4 AZ will be
The integral with respect tbis then AZ=Z2+Z, 3+ Zyayn +Zya+ ..., (92
4096 J. Appl. Phys., Vol. 80, No. 7, 1 October 1996 Harfield, Yoshida, and Bowler
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0.40
1 (o
Zo=— mffd\]klpkld Z, (93) go
L o § 0.30
Zk3= — mf [Jk2pkl+ Jklka]dZ, (94) *‘7>"';
_d [
1 ro § 0.20
Zydin k= — _2f JkiPisin «dz, (95 £
al —d 5
h=
1 (o S o010
- © ——  Analytical solution
Zk4 ol zf_d[Jkspkl+szsz_}_Jklpka]dZ. (96) & O Numerical solution
The integrals obtained by substituting férand p into Egs. 0.00 O—— L . L . o E—

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

(93) to (96) are straightforward to evaluate. Those worthy of Location, z {mm)

note are only those which involvge.. In that case, evalua-
.tlon may be performed by Sp|lttl.ng the Iogarlthm into a S.um’FIG. 1. Comparison between the real part of the analytical solution for the
integrating by parts and making the change of variablgjipole density and the numerically calculated value for a long, surface-

z=dsint. It is found that breaking crack in the low-frequency limit.
o (d+{d=2|  =d®
dez In 7 dz= 12 97 tion and its numerical implementation are given elsewhére,
with its verification in the high-frequency regime. In Figs. 1
0 3 d+yd*-z%|  —d* and 2 respectively, the real and imaginary parts of the dipole
Jle n dz=——. 98 gensity are compared for a crack of depth 1.0 mm and for

d/6=0.1 and 0.2. Very good agreement between the analyti-

The terms in the series expansion& are found to be cal and numerical solutions is observed. In Fig. 3, the real
1(Ho\%m and imaginary parts of the normalized impedance change,
Zy2 ( | ) E(kd)z, (99 which is defined byo(1/Hg)?AZ, are compared fod/ & in
the range 0.0 to 0.4. Fad/6=0.4 there is approximately
1(Hg)\24i 3 20% difference between analytically and numerically calcu-
3=~ _(T> E(kd) ' (100 lated values of ReXZ). Agreement between the two sets of

results is, however, extremely good for IAY), even be-

7. L (Mo zz(kd)“ln _d (101) yond d/§=0.4. In the numerical calculation, the crack was
kfin k | ] 8 4 divided into 20 sections and a conductivity ef=10°
1/H\ 22 1 S m ! was used. Note that the lowest order terms in the
Za= _(_f’) T y+ =+ = (kd)4. (102 impedance series expansioZgp, are purely imaginary for
ol l 16 8 4) both examples considered here and the term of next order,

There is no reason why, in principle, this solution should not?k? has real and imaginary parts of equal magnitude. This
be extended and higher order terms evaluated. The resulf@éans that, if only two terms in the series are available, then
obtained so far, however, indicate that the seriespf@nd

AZ are rapidly converging and little improvement in accu-

racy would be obtained by proceeding to higher order. 0.00 Q=g

—  Analytical solution
O Numerical solution

VI. DISCUSSION OF RESULTS

The terms in the series expansion for the impedance
change for the semi-circular, surface-breaking crack, given
in Egs. (44) and (45), agree with those obtained indepen-
dently by Nair and Rosgwho also used a formulation valid
for arbitrary frequency and then considered the low-
frequency asymptotics. While our lowest order term in this
series agrees with that of Kincaidhe second term differs
by a factor of 5/6. This discrepancy is due to the approxima-
tions made by Kincaid in deriving his result. 0.40

The analytical results for the dipole density and imped- 1.0 0.8 06 04 0.2

. Location, z (mm)
ance change for the long, surface-breaking crack are com-
pared Wlth,numencal pl’EC?ICtIOI’lS in the following flgqres. FIG. 2. Comparison between the imaginary part of the analytical solution
The numerical calculation is based on a vector-potential iNfor the dipole density and the numerically calculated value for a long,
tegral formulation. Details of the vector potential formula- surface-breaking crack in the low-frequency limit.

-0.30

Imaginary par of dipole density, Im(p/H,)
o
n
o
1

0.0
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4.0 T T T T T 7T y

0.4 T T T T J T ! (L 1
—— Theory (real pan) ——  High frequency solution "' i
---- Low frequency solution J;
® Numerical solution K

---- Theory (imaginary pait) Re
® Computation (real part) ’

O Computation (imaginary part) Jo) 80

o
w
T
.
1

o}

Normalized impedance change
o
N
L]
‘\
L
Imaginary part of normalized impedance

2.0

FIG. 3. Comparison between the analytical solution and the numericallyIG. 5. Analytical and numerical solutions for the imaginary part of the
calculated value for the impedance change due to a long, surface-breakingipedance change due to a long, surface-breaking crack.
crack in the low-frequency limit.

for d/é greater than about 1.0. This leaves only the small
Im(AZ) is known more accurately than ReZ) since both  intermediate range of frequencies described by
terms contribute to Im{Z) but only the second term con- 0.5<d/$<1.0 in which neither theory works particularly
tributes to RedZ). Even for a larger number of terms it \ell. From Fig. 5, in which predictions for InXZ) are
follows that, since the dominant term in the series is purelyshown, it is seen that the low-frequency theory works well
imaginary, the analytical predictions for IhZ) will be  for d/5<1.0 (the numerical and analytical predictions agree
more accurate than those for Re{). This feature is ob- to within 8% even ford/5=1.0) and the theory for higher
served in Fig. 3. frequencies works well fod/ = 1.5. For the imaginary part

In Figs. 4 and 5 we include, for interest, comparisons ofof the impedance change, therefore, acceptable analytical so-

numerical and analytical predictions for a long, surfacequtions exist for all frequencies except those described by
breaking crack withd/ § up to 2.0 in value(Ford/6>2.0the  1.0<d/§<1.5.

analytical curve matches numerical predictions extremely
well.) The analytical curve for low-frequency is that derived

in this paper. The analytical predictions for higher frequen-V!l. CONCLUSION
cies are derived using a method based on the Geometrical

In this paper, we present a method by which low-
Theory of Diffractiort® and presented elsewhéfen Fig. 4, pap P y

X i : o frequency solutions for the impedance change due to closed
the real part oAZ is considered. From the figure itis clear . 50 in metals can be calculated. The crack is treated as an
that the low-frequency theory works well fa & less than  oq,jivalent layer of current dipoles whose field is represented
about 0.5 and the theory for higher frequencies works welby an integral over the dipole layer with the appropriate
Green’s function kernel. The formulation is valid for arbi-
trary frequency and the low-frequency solution is found us-
25 . . . . . T . ing a perturbation method in which the individual terms in
‘ , the series expansion for the dipole density distribution are

I —— High frequency solution . ) . .
----  Low frequency solution each solutions of Laplace’s equation. Two example solutions

® Numerical solution are given. The first two terms in the series expansion for
1 AZ are calculated for a semi-circular, surface-breaking
4 crack. The solution agrees with that of an independent
calculation® The first four terms in the series expansion for
AZ are calculated for a long, uniformly deep, surface-
7 breaking crack. The solution agrees well with that of an in-
; dependent numerical calculatidh.

Clearly, this method is suitable for predictingZ for
closed cracks of geometry other than those considered here.
Both surface-breaking and sub-surface cracks can be treated.
From Figs. 4 and 5, in which analytical solutions for the
impedance change due to a long crack at both(lonesented
here and higher frequencigpresented in Ref. J6are com-

FIG. 4. Analytical and numerical solutions for the real part of the imped- Pared with numerical predictions, we conclude that satisfac-
ance change due to a long, surface-breaking crack. tory analytical solutions now exist for most of the range of

- - N
o 3] [=3
1
1

et
&)

Real part of normalized impedance

0.0
2.0
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values ofd/ 8. The analytical solutions fail only in the small then the dual integral equations given in EGs4) and (A5)
ranges given by 05d/§<1.0 for Re@AZ) and become

1.0<d/6<1.5 for Im(AZ). d(2)=f(z) |2]<d, (A10)

ACKNOWLEDGMENTS x(2)=0 |[z]>d, (A11)

for which an elementary solution can be found by a method

Coug(r;illa fgfr tf?:aﬁgglogﬁYY())r\f[VOJulleB“iiestL? th;r;: dtf;)e ﬁ:g'i;‘in_similar to that for the problem of the electrified disc; Beltra-
pport. bp Y mi’s method(Ref. 6, Sec. 3.b

istry of Defence, UK and the Defence Research Agency, The function &(u) will be represented in terms of a

Famborough. functiong(t) by means of the relation
d
APPENDIX A: DUAL INTEGRAL EQUATION a(u)zf g(t)Jp(tu)dt. (A12)
ANALYSIS FOR A LONG, SURFACE-BREAKING 0
CRACK

Substituting Eq(A12) into Eq.(A9) and reversing the order

The long crack problem can be formulated in terms ofof integration yields
the following boundary conditions:

d ©
P4 (%,2) x(2)= JO g(t)f0 J(tu)cogzu)du dt (A13)
f(z)+ TZO, X=O,|Z|<d, (A1)
It is found that(Ref. 6, Eq. 2.1.18
w=0 x=0,z|>d (A2) d g(t)
X ’ ' ’ j dt |z]<d
(=3 Jz JiT=2 (A14)

where f(z) is the prescribed incident electric field and
#(X,2) is thex-component of the magnetic vector potential 0 |2|>d.
of the ordered problem in which 7,(x,z)/dx is a solution  pFrom Eq.(A8) we can write

of Laplace’s equation. Sincé. Z,/dx is an even function

with respec_t tOZ,.It is an_t|C|pateq that the .general integral ®(2)= _f a(u)sin(zu)du. (A15)
representation will contain a cosine kernel: 0z)g
9. 24(X,Z @ ituti i i i -
«(X,2) :f a(u)eWcog zu)du. (A3) $ubst|tut|ng forq(u) and interchanging the order of integra
X tion as before gives

This expression is clearly a solution of Laplace’s equation. a (d il _

Applying the boundary conditions to EGA3) yields the fol- *(2)=— o g(t)jo J(tu)sin(zuydu dt (A16)
lowing dual integral equations:

Integrating with respect ta (Ref. 6, Eq. 2.1.14gives

ua(u)cogzuydu="f(z) |z|]<d, A4
| vatweoszuau=rz) 12 (Ad) afen
0 1”72 O*IZZ—IE
u)cogzu)du=0 |z|>d. A5 ®(z)= (A17)
| aweoszudu-o 12 (85) XTI
These are equations of the Titchmarsh type, which have been dzJo \z2*—t*

considered in the following form in Ref. 6, Sec. 4.5: It follows that Eq.(A12) will give a solution of the dual

S integral equations provided thg(t) is a solution of the in-
JO u ta(u)cogxu)du=F(x) 0=x<l1, (AB)  tegral equation
) ﬂfz 904 f(z) |z<d (A18)
= — | =—==dt=f(z2) |z]<d.
JO a(u)cogxu)du=0 x>1. (A7) 9z O\/ﬂ

Only the cases in whick=0 or 1 are of physical interest; The functiong(t) is given by(Ref. 6, Eq. 2.3.¥
k=1 corresponds to the problem currently under consider-

i 2t [t f(w)
ation.
t)=— | —dw. A19
If we write 9=~ odiz—w W (A19)
_[" The solution of the dual integral Eq#\4) and(A5) is, there-
®(2) fo ua(ucogzuwduy, (A8) fore, given by Eq(A12), with g(t) given by Eq.(A19).
Substituting these results into the general integral repre-
X(z)zJ'ma(u)cos{zu)du, (Ag)  sentation fora.7,(x,z)/dx, Eq. (A3), the following triple
0 integral is obtained:
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dA(X,2) 2 (= (d [t f(w) ux
X :;jo Jo jo \/tZ—WZtJO(tU)e

xXcogzuydw dt du (A20)

This integral is evaluated for the prescribed incident field,
f(w), and, from the result, the equivalent current dipole den-

sity on the crack can be found.

APPENDIX B: DETERMINATION OF CURRENT
SOURCES

In order to find the termg,s, x and py3, the “current
sources” Z3n k and 7 are required. Evaluation of
Zien WPy, reveals terms of order bot?in k andk®. Using
Zen « andp, given by Eqs(57) and(76) respectively, it
emerges that the determination @iz, \pia involves evalu-
ation of an integral of the kind:

d
J V1—(Z'1d)? InyZ?—2'?dZ . (B1)
~d
Rewriting Eqg.(B1) as follows,
d [1-(2'/d)?]
————In{yz*-z'%d7, B2
f—d J1—(Z'1d)? &2

and recognising thatl— (z'/d)?]=3To(z'/d)—Ty(z'/d)]
(where the T, are Chebyshev polynomials of the first kind
and To(x) =1, T,(x) =2x2—1) enables the evaluation of Eq.
(B1) by means of the following relatiofRef. 17, Sec. 49

1a 1 x'
2| ————T, = |Inx®=x"2dx’
7)-af1-(x"7a)? "\ @
2 X
aln{ =|To| =] n=0,
a a
= a « (B3)
—|T,| = n=12,.....
n a
This gives
; Hoik3d?[ (kd| 1 [z\2
’—%kzln kpklzT In Z +§+ a . (B4)

The term of ordek® Ink is clearly

4100 J. Appl. Phys., Vol. 80, No. 7, 1 October 1996

Hoik3d?  [kd
(Pl = ——7—In| 4|, (BS)
and, from Eq.(67),
LoHoik3d?  [kd
k@in k:%m ik (B6)

The remaining terms in EqB4) contribute to (4p),s. The
evaluation of%,2p,1 from Egs.(58) and(76) is straightfor-
ward and, combined with the appropriate terms from Eq.
(B4) gives

) Hoik3 i
(ZP)s= d? 1+ y— —|+22|. (B7)
4 2
From Eg.(68) with Egs.(59) and(B7) we find
Hoik3 i
i%ke,:'uoTo[dz(H v g)—zZ . (B8)
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