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Low-frequency perturbation theory in eddy-current
non-destructive evaluation

N. Harfield,a) Y. Yoshida,b) and J. R. Bowler
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, England

~Received 22 April 1996; accepted for publication 18 June 1996!

A method is presented by which series solutions for the impedance change in an eddy-curren
probe due to closed cracks in a non-magnetic, conducting half-space can be derived a
frequency. The series solution is applicable for flaws whose dimensions are much smaller tha
electromagnetic skin-depth. The problem is formulated using an approach in which the fla
represented by an equivalent distribution of current dipoles. The electric field scattered by the
is then written as an integral, over the flaw, of the product of the dipole density distribution and
appropriate Green’s function. Terms in the series expansion for the dipole density are calculat
solving the integral equation at each order in the chosen small parameter, using perturbation t
and a dual integral equation method. The impedance change due to the crack is then calculate
the dipole distribution using the reciprocity theorem. Example solutions are given for semi-circ
surface-breaking cracks and for long, uniformly deep surface-breaking cracks. Results are com
with other analytical solutions and the predictions of an independent numerical scheme, and
good agreement is observed. ©1996 American Institute of Physics.@S0021-8979~96!08418-6#
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I. INTRODUCTION

The detection and characterization of flaws in condu
ing material is important for the safe operation of many cri
cal structures in, for example, the nuclear power and ae
space industries. Eddy-current inspection methods, in wh
the electric current is induced in a test-piece at a fixed f
quency by an excitation coil, are commonly used to det
flaws such as cracks or inclusions by observing change
impedance of the coil. The detection of a flaw is straightfo
ward in comparison with its characterization, which requir
detailed understanding of the relationship between obser
signals and flaw geometry.

The literature concerning eddy-current inspection at lo
frequencies is relatively limited, probably due to the fact th
flaw detection is far from optimum when the electromagne
skin-depth,d, is larger than the dimensions of the flaw. Th
skin-depth is given by

d5S 2

vm0s
D 1/2, ~1!

wherev52p f is the angular frequency,m0 is the perme-
ability of free space ands is the conductivity. There are
however, both theoretical and experimental advantages
working with relatively large skin-depths. Theoretically, so
lutions for the electromagnetic fields may be sought in t
form of a series expansion in the small parameterkl, where
the wave numberk is defined

k5Aivm0s5
11 i

d
~2!
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and l is a characteristic flaw dimension. At lowest order, the
fields can be derived from a potential satisfying the Laplac
equation, and higher order terms may be found using pertu
bation methods. This means that, for defects of simple g
ometry such as sub-surface spherical inclusions or surfac
breaking hemispherical indentations, familiar analytica
solutions can be used to determine the eddy-current distrib
tion. The simple algebraic expressions obtained theoretica
could be useful for probe calibration using a particular flaw
geometry. Low-frequency operation is also required for sig
nificant field penetration into the conductor, which is particu
larly important in the detection of sub-surface flaws.

An early contribution to low-frequency eddy-current
modelling is that of Burrows1, who estimated the impedance
change due to a spherical cavity in a conductor by modellin
the cavity as a dipole source. Another approximate metho
was presented by Kincaidet al.2 and Kincaid3 who used the
static form of Maxwell’s equations to derive the scattere
electric field due to an ellipsoidal void in a conductor for a
uniformly applied electric field. The low-frequency limit in
the case of a uniform applied field was also considered b
Auld et al.4 who adopted two different approaches. The flaw
was modelled as a flat, hemi-ellipsoidal void breaking th
conductor surface and, firstly, the scattered field was treat
as that produced by an infinitesimal dipole located at the fla
centre with strength related to the size and aspect ratios
the ellipsoid. Secondly, the analogy between eddy-curre
flow in the low-frequency limit and fluid flow in an incom-
pressible fluid was exploited.

A more thorough treatment of low-frequency eddy-
current theory has been given by Nair and Rose.5 Unlike the
approximate methods described above, Nair and Rose co
sidered the low-frequency asymptotics of a general formula
tion valid for arbitrary frequency. The first few terms of a
low-frequency asymptotic expansion were derived for th
electric fields induced by an external current distribution
above a conducting half-space containing a flaw. From th
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solution the flaw-induced impedance change was calculat
Example solutions were given for a number of sub-surfa
and surface-breaking defect geometries.

The solution method presented here is also develop
from a general, rigorous formulation valid for arbitrary fre
quency. The crack is represented by an equivalent distrib
tion of current dipoles and the electric field scattered by t
flaw then expressed as an integral over the flaw of the sca
product of the dipole density distribution and an appropria
Green’s function kernel. Terms in the series solution for th
dipole density distrubution are calculated by solving the i
tegral equation at each order inkl using a dual integral equa-
tion method.6 The resulting series solution for the dipole
density distribution is then used to calculate the impedan
change via a relation derived using the reciprocity theorem7

The structure of the paper is as follows. The proble
formulation is described in Sec. II and the series solution
described in Sec. III. In Secs. IV and V specific problems a
solved using the formulation of Sec. II, namely, the problem
of a semi-circular surface-breaking crack~Sec. IV! and a
long, surface-breaking crack of uniform depth~Sec. V!. The
results of these calculations are discussed in Sec. VI a
compared with other analytical solutions~in the case of the
semi-circular crack! and the results of a numerical schem
~in the case of the long crack!. Concluding remarks are made
in Sec. VII.

II. FORMULATION

Define an ideal crack as a crack which is closed b
allows no passage of electric current. An ideal crack th
produces a discontinuity in the tangential component of t
scattered electric field which may be represented in terms
a surface distribution of current dipoles,8 p5pn̂, wheren̂ is
the unit vector normal to the crack:

Et
12Et

252
1

s
¹ tp~r !, ~3!

where the superscripts indicate limiting values as the crack
approached from one side or the other, and¹ t is the differ-
ential operator tangential to the crack face. We adopt t
convention thatp is positive for dipoles directed towards the
positive side of the layer. The dipole distribution effectivel
acts as the source of the scattered field. This means that
scattered field can be written in terms of an integral equati
with a Green’s function kernel which will be solved forp.
The impedance change due to the presence of the cra
DZ, will then be calculated by means of a relation derive
from the reciprocity relationship7:

I 2DZ52E
S0

E~ i !
•p dS, ~4!

where the superscript (i ) indicates the incident~applied!
field andS0 is the open surface of the crack. The integr
equation formulation lends itself to solution using perturb
tion methods and leads to an asymptotic series solution
both p andDZ. The field equations will be considered ini
tially for an arbitrary current source and a conductor who
interface with air is defined by the planez50 and which
J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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contains a crack lying in the plane defined byx50. The
scattered electric field~denoted by the superscript (s)) can
be expressed in integral form in the following way:

E~s!~r !5 ivm0E
S0

G~r ,r 8!.p~r 8!dS8, ~5!

whereG(r ,r 8) is a half-space dyadic Green’s function for a
source in the conductor and the primed co-ordinates a
source co-ordinates. The total electric field may, therefor
be written as the sum

E~r !5E~ i !~r !1 ivm0E
S0

G~r ,r 8!.p~r 8!dS8. ~6!

The Green’s function ensures that the electric field satisfie
Maxwell’s equations in the quasi-static limit and that the
tangential components of the electric and magnetic fields a
continuous at the air-conductor interface. An excellent dis
cussion concerning the use of dyadic Green’s functions
electromagnetic theory is given by Tai.9 Equation~6! is ap-
propriate for a three-dimensional system. In the specific e
amples which follow, the two-dimensional form of Eq.~6!
will be solved by a perturbation method once suitable ex
pressions for its components have been found. The incide
electric field is known. The forms of the dyadic Green’s
function and the current dipole density distribution must b
considered.

The dyadic Green’s function appropriate to this problem
may be written as follows10:

G~r ,r 8!5G0~r ,r 8!1Gi~r ,r 8!1
1

k2
¹3 ẑ¹83 ẑV~r ,r 8!,

~7!

whereG0(r ,r 8) is the free-space dyadic Green’s function
Gi(r ,r 8) represents the image source and the term containi
V(r ,r 8) deals with the effect of the air-conductor interface
The free-space dyadic Green’s function,G0(r ,r 8), is given
by

G0~r ,r 8!5S I1 1

k2
¹¹ Df~r ,r 8!, ~8!

whereI5 x̂x̂1 ŷŷ1 ẑẑ is the unit dyad and

f~r ,r 8!5
eikur2r8u

4pur2r 8u
. ~9!

The Green’s function representing the image sourc
Gi(r ,r 8), is given by

Gi~r ,r 8!5S I 82
1

k2
¹¹8Df~r ,r 9!, ~10!

where I 85 x̂x̂1 ŷŷ2 ẑẑ and, for a system in which the air-
conductor interface occupies the planez50, r 95r 822ẑẑ8 is
the co-ordinate of the image of the point whose positio
vector isr 8. The two-dimensional Fourier representation o
V(r ,r 8) is
4091Harfield, Yoshida, and Bowler
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V~r ,r 8!5
1

~2p!2
E

2`

` E
2`

` S 1k 2
1

g D
3e2guz1z8u1 iu~x2x8!1 iv~y2y8!du dv, ~11!

where, taking roots with positive real part,k5Au21v2 and
g5Au21v22k2 and u and v are Fourier space variables
From Eq.~11! it can be shown that a term of orderk2 is the
lowest order term inV(r ,r 8):

1

k
2
1

g
5
1

k
2
1

k S 12
k2

k2D 21/2

;
1

k
2
1

k S 11
k2

2k2D
5

k2

2k3 .

While the contribution ofV(r ,r 8) must, in general, be con-
sidered, it will be shown that this term does not feature in t
two-dimensional infinite crack problem~one of the examples
considered later!.

The first step in determining the current dipole dens
distribution,p, is to rewrite Eq.~6! in terms of a magnetic
vector potential,A, which represents the scattered field:

E~r !5E~ i !~r !1
1

m0s
~¹¹1k2I !•A~r !. ~12!

Imposing the Lorentz gauge condition on the divergence
A leads to the following equation which is valid in the con
ductor ~but off the crack!:

~¹21k2!A~r !50. ~13!

The formal solution of Eq.~13! is11

A~r !5m0E
S0

G~A!~r ,r 8!.p~r 8!dS8, ~14!

wherep is a surface dipole density distribution. The dyad
Green’s function for the vector potential is given by

G~A!~r ,r 8!5If~r ,r 8!1I 8f~r ,r 9!

1
1

k2
¹3 ẑ¹83 ẑV~r ,r 8!. ~15!

Equation~12! becomes

E~r !5E~ i !~r !1
1

s
~¹¹1k2I !E

S0

G~A!~r ,r 8!.p~r 8!dS8.

~16!

By inserting Eq.~15! into Eq. ~16! and taking care to ex-
change integral and differential operators only in such a w
as to leave the equation unchanged, it may readily be veri
that Eqs.~16! and ~6! are equivalent.

The crack is assumed to act as a perfect barrier to
flow of eddy-currents which means that the normal comp
nent of the electric field at the surface of the crack is ze
Forming the scalar product of Eq.~16! with the unit vector
normal to the crack face,x̂, gives
4092 J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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Jx
~ i !~r !1S ]2

]x2
1k2D E

S0

@f~r ,r 8!1f~r ,r 9!#p~r 8!dS8

2
]2

]y2ES0V~r ,r 8!p~r 8!dS850, rPS0 , ~17!

where Jx
( i )(r )5sE( i )(r )• x̂. The definition of the mixed

boundary value problem is completed by noting that, in th
remainder of the plane of the crack~the part not occupied by
the crack itself! the boundary condition on the magnetic vec
tor potential in the conductor is

]Ax~r !

]x
50, rPS1 , ~18!

whereS1 denotes the part of the crack plane in the conduct
not including the crack itself.

Now, the dipole density may be related to a jump in th
normal gradient of the vector potential at the crack via E
~12!. In finding this relationship it is observed that the vecto
potential of a vertical crack with its normal in the
x-direction has only x- and y-components. The
y-component arises solely from coupling between thex- and
y-components of the vector potential at the surface of th
conductor by the part of the Green’s functionG(A), given by
Eq. ~15!, which containsV(r ,r 8). Since both the incident
electric field and the field reflected at the air-conductor inte
face are continuous across the crack, it is found that t
discontinuity in the tangential electric field across the crac
depends only on the normal component of the vector pote
tial:

Et~r !ux501
2Et~r !ux502

5
1

m0s
¹ tS ]Ax~r !

]x U
x501

2
]Ax~r !

]x U
x502

D . ~19!

Comparing Eqs.~3! and ~19! gives

p~r !52
1

m0 S ]Ax~r !

]x U
x501

2
]Ax~r !

]x U
x502

D
52

2

m0

]Ax~r !

]x U
x501

, ~20!

where the last step in Eq.~20! is a consequence of symmetry
Equations~17! and~20! together define the conditions which
must be matched by the magnetic vector potential on t
crack. Once the vector potential has been determined,
current dipole density on the crack is found from Eq.~20!.
The change in probe impedance due to the flaw can then
calculated using the relation given in Eq.~4!.

III. SERIES SOLUTION

In the static limit, the incident electric field at the crack
is zero and, consequently, the term in the series expansi
for p of zero order ink, pk0, is also zero. Thus the series
expansion forp starts at first order ink:

p~r !5pk1~r !1pk2~r !1 . . . ~21!
Harfield, Yoshida, and Bowler
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DZ5Zk21Zk31 . . . . . ~22!

As mentioned in the introduction, solutions for]Ax /]x ~and
hence forpx) will be found by ordering the governing equa
tions in terms of the small parameterkl so that, at each order,
the individual terms in the series expansion forp are each a
solution of Laplace’s equation. This is the fundamental sim
plification afforded by the perturbation method of solution
At each order inkl we will define a mixed boundary value
problem

J ~r !1
]2Ax~r !

]x2
50, rP crack domain ~23!

]Ax~r !

]x
50, rP crack plane excluding crack, ~24!

whereJ andAx are the terms of appropriate order in th
series expansion representations of the current sourceJx

( i )

and thex-component of the magnetic vector potentialAx .
For simple geometries, this mixed boundary value proble
lends itself to solution using a dual integral equation a
proach.

From Eq.~17! it can be seen that computation of the firs
two terms in the above series will, in general, be relative
straightforward compared with the calculation of higher o
der terms. The reason for this is that the term involvin
V(r ,r 8) is of order k2 at lowest order and not, therefore
involved in the calculation of the first two terms in the serie
of Eqs.~21! and ~22!, simplifying the computation dramati-
cally. In the example of the semi-circular, surface-breakin
crack given in Sec. IV below, only the first two terms in
these series are found. In the case of the long, surfa
breaking crack of uniform depth treated in Sec. V, howeve
it is possible to proceed to higher order more easily becau
there is noy-dependence in the fields and the term contai
ing V(r ,r 8) in Eq. ~17! vanishes for all orders ofk.

IV. SEMI-CIRCULAR, SURFACE-BREAKING CRACK

We will now compute the first two terms in the serie
expansions forp and for DZ for a semi-circular, surface-
breaking crack.

A. Dipole density

As mentioned above, the term involvingV(r ,r 8) in Eq.
~17! does not enter the calculation of the first two terms
the series forp andDZ and, for these orders, we can write

Jx
~ i !1

]2

]x2ES0@f~r ,r 8!1f~r ,r 9!#p~r 8!dS850. ~25!

This means that, for these low orders, the half-disc crack c
be transformed into a disc problem by extending the range
integration in Eq.~25! to embrace a circular regionC0. Simi-
larly, Eq.~18! is then applied to a regionC1 consisting of the
entire plane of the crack excludingC0. To extend the region
of integration in Eq.~25!, the variablez8 is replaced by
2z8 for that part of the integration involving the image
Green’s function. The range of the functionsJx

( i ) andp(r ) is
J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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extended by assuming that they are even inz. This ensures
that, over the half-rangez,0, we obtain the same solution a
we would from Eqs.~18! and ~25!. Equation~25! becomes

Jx
~ i !~r !1

]2

]x2EC0f~r ,r 8!p~r 8!dS850, rPC0 , ~26!

that is,

Jx
~ i !~r !1

]2Ax~r !

]x2
50, rPC0 , ~27!

and Eq.~18! becomes

]Ax~r !

]x
50, rPC1 . ~28!

We can now order Eq.~26! explicitly. Write

Jx
~ i !1Kp50 ~29!

where

K5F ]2

]x2EC0dS8f~r ,r 8!G
x5x850

~30!

and, from Eq.~9!,

K k05
1

4pur2r 8u
. ~31!

Thenpk1 andpk2 can be found by solving, respectively,

Jk11K k0pk150 ~32!

Jk21K k0pk250 ~33!

with Eq. ~28!.
For a uniform incident field directed normal to the crac

face,

Jx
~ i !5 ikH0e

ikuzu5H0F ik1~ ik !2rucosuu1
~ ik !3

2!
r2cos2u

1••• G , ~34!

where we have used cylindrical polar co-ordinates, writi
z5rcosu, so

Jk15 ikH0 ~35!

Jk252k2H0rucosuu. ~36!

Equations~32! and ~33! may now readily be solved by not-
ing the link with the magnetic vector potential through E
~27! and then solving for]Ax /]x using a dual integral equa-
tion method described in Ref. 6, especially Chap. 4. It c
then be deduced from Eq.~20! that

pk1~r!524H0ikAa22r2, ~37!

where a is the radius of the semi-disc shaped crack. T
second order incident field is

Jk2~r,u!52k2H0rucosuu

52k2H0rF 2p 2
4

p (
n51

`
~21!ncos~2nu!

4n221 G . ~38!
4093Harfield, Yoshida, and Bowler

t¬to¬AIP¬license¬or¬copyright,¬see¬http://jap.aip.org/jap/copyright.jsp



-
li-
f

e
ar

i-

e

,
s

a-

e
e
.

Similarly expanding the second order dipole density as

pk2~r,u!5 (
n50

`

pk2
n

~r!cos~nu! ~39!

and solving Eq.~33! and Eq.~28! gives, for the first term in
this expression,

pk2
0

5
H0k

2

p
aFAa22r21

r2

a
lnS a1Aa22r2

r D G . ~40!

Only this first term in the expansion of Eq.~39! is required to
calculate the contribution to the impedance since the fi
order incident field is independent ofu. The first two terms
in the series expansion for the dipole density are thus giv
by Eqs.~32! and ~33!.

B. Impedance

The impedance change due to the crack will be calc
lated by means of Eq.~4! which is, in terms of the current
source,

DZ52
1

sI 2ES0Jx~ i !~r,u!p~r,u!dS ~41!

and, for the first two orders,

Zk252
1

sI 2ES0Jk1pk1dS, ~42!

Zk352
1

sI 2ES0@Jk2pk11Jk1pk2#dS. ~43!

Evaluation of the integral of Eq.~42! is straightforward, giv-
ing

Zk252
1

s SH0

I D 2 43 k2a3. ~44!

Calculation of the first term in Eq.~43! is also straightfor-
ward. In order to evaluate the second term in Eq.~43!, the
expression of Eq.~40! can be used since, for a uniform inc
dent field, there is no contribution from higher order terms
Eq. ~39!. We obtain

Zk352
1

s SH0

I D 2ik3a4. ~45!

This concludes the calculation of the first two terms in t
low-frequency series expansion for the impedance cha
due to a semi-circular, surface-breaking flaw.

V. LONG, SURFACE-BREAKING CRACK

A. Dipole density

Consider a crack of infinite extent in they-dimension
with uniform depthd so that the crack surface is describe
by x50,2d<z<0. Both the crack geometry and the inc
dent field are now independent ofy which means that the
dipole density is also independent ofy. Integration by parts
shows that the term containingV in Eq. ~17! vanishes, leav-
ing
4094 J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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Jx
~ i !~r !1F ]2

]x2
1k2G E

S0

@f~r ,r 8!1f~r ,r 9!#p~r 8!dS8

50, rPS0 . ~46!

Equation~46!, together with the condition of Eq.~18!, de-
fines the mixed boundary value problem in this two
dimensional case. For this geometry, image theory is app
cable at all orders, enabling extension of the region o
integration in Eq.~46! to include the image of the crack
obtained on reflecting the cracked conductor in the interfac
plane. This extension is achieved, as for the semi-circul
crack, by substituting2z8 for z8 in the part of the integrand
of Eq. ~46! which involves the image Green’s function. Eq.
~46! becomes

Jx
~ i !~r !1F ]2

]x2
1k2G E

C0

f~r ,r 8!p~r 8!dS850, rPC0 ~47!

which, along with Eq.~28!, defines the mixed boundary
value problem for the long, surface-breaking crack of un
form depth in a half-space conductor.

For this long crack geometry, it is possible to integrat
out they8 variable in the Green’s functionf(r ,r 8) given by
Eq. ~9!. The appropriate two-dimensional Green’s function
representing an outgoing wave with a boundary at infinity, i
given by

E
2`

`

f~ ur2r 8u!dy85
i

4
H0

~1!~kr !,

where

ur2r 8u5A~x2x8!21~y2y8!21~z2z8!2,

r5A~x2x8!21~z2z8!2

andH0
(1) is the zeroth order Hankel function of the first kind.

The Hankel function of the first kind is the correct Green’s
function in two dimensions for outgoing waves with a
boundary at infinity. It exhibits a logarithmic singularity at
the origin, as is required in the two-dimensional case. Equ
tions ~47! and ~28! may now be written

m0Jx
~ i !~0, z!1F S ]2

]x2
1k2DAx~x,z!G

x5x850

50, uzu,d,

~48!

where

Ax~x,z!5m0

i

4E2d

d

H0
~1!~kr !p~z8!dz8, ~49!

and

]Ax~x,z!

]x
50, x50,uzu.d ~50!

for the specific geometry in question. We will proceed to
solve these equations for]Ax /]x from which the dipole den-
sity can be deduced using Eq.~20!.

The form of the series solutions obtained for the dipol
density and impedance change is dictated by the form of th
low-frequency asymptotic expansion of the Hankel function
Harfield, Yoshida, and Bowler
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The asymptotic expansion of the Hankel function of the fi
kind for small argument is found from Ref. 12, Eqs. 9.1.
9.1.12 and 9.1.13:

H0
~1!~z!5

2i

p
lnS z2D1S 11

2ig

p D2
2i

p S z2D
2

lnS z2D
2S 11

2i ~g21!

p D S z2D
2

1 . . . , ~51!

whereg is Euler’s constant. From Eq.~51!, a series solution
for p of the following form is anticipated:

p5 (
n50

`

@mn~k!1hn~k!#, ~52!

wheremn(k)5ank
nlnk, hn(k)5bnk

n andan andbn are con-
stant coefficients. The terms in this series obey the follow
ordering criteria13:

limk→0

hn~k!

mn~k!
50, limk→0

mn11~k!

hn~k!
50, ~53!

sincekn/(knln k)→0 andkn11ln k/kn→0 ask→0.
It is now possible to order Eq.~48!. Write

Jx
~ i !1Lp50, uzu,d, ~54!

where

L[H F ]2

]x2
1k2G i4E2d

d

dz8H0
~1!~kr !J

x5x850

. ~55!

The way in which Eq.~55! is ordered depends on the form o
Eq. ~51!. Substituting into Eq.~55! for H0

(1) from Eq. ~51!
and performing the double differentiation leads to the fo
lowing definitions:

Lk0[2
1

2pE2d

d

dz8
1

~z2z8!2
, ~56!

Lk2ln k[2
k2

4pE2d

d

dz8lnS kuz2z8u
2 D , ~57!

Lk2[F11
i

p
~2g11!G ik28 E

2d

d

dz8. ~58!

The termsLk0ln k , Lk1ln k andLk1 are zero. For a uniform
incident field directed normal to the crack face,

Jx
~ i !5 ikH0e

ikuzu5H0F ik1~ ik !2uzu1
~ ik !3

2!
uzu2

1
~ ik !4

3!
uzu31 . . . G , ~59!

a simple power series expansion. It is found that, up to ter
of orderk3 in the series solution forp, the ordering of Eq.
~54! results in

Jk11Lk0pk150, ~60!

Jk21Lk0pk250, ~61!

~Lp!k3ln k1Lk0pk3ln k50, ~62!

Jk31~Lp!k31Lk0pk350. ~63!
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The terms (Lp)k3ln k and (Lp)k3 are bracketed since con-
tributions to them both arise fromLk2ln kpk1. The ordering
allows the Helmholtz problem of Eq.~54! to be dramatically
simplified. Equations~60! to ~63! essentially redefine the
problem at each order ink so that the individual terms in the
series expansion forp are each a solution of Laplace’s equa-
tion. This simplification is fundamental to the perturbation
method of solution. From Eqs.~60! to ~63! it is clear that the
first four non-zero terms in the series expansion forp are

p5pk11pk21pk3ln k1pk31 . . . . . ~64!

We proceed to find these terms by linking Eqs.~60! to ~63!
with Eq. ~23! at each order and using the dual integral equa
tion method of solution given in Appendix A. From Eqs.
~60! to ~63! we identify

J k15m0Jk1, ~65!

J k25m0Jk2, ~66!

J k3ln k5m0~Lp!k3ln k , ~67!

J k35m0@Jk31~Lp!k3#, ~68!

and

S ]2A

]x2 D
ki

5Lk0pki. ~69!

The following solution, derived in Appendix A, is found:

]Ax~x,z!

]x
5
2

pE0
`E

0

dE
0

t J ~w!

At22w2
tJ0~ tu!e2ux

3cos~zu!dw dt du. ~70!

The terms in the series solution forp are found by evaluating
Eq. ~70! for each order using the appropriate ‘‘current
source’’ given in Eqs.~65! to ~68!. The solution forpk1
proceeds as follows. From Eqs.~65! and ~59!,

J k1~z!5m0H0ik. ~71!

Substituting into Eq.~70! gives, for the inner integral,

E
0

t 1

At22w2
dw5

p

2
. ~72!

Integration with respect tot in Eq. ~70! is then performed by
means of a simple change of variable and a standard res
given in Ref. 12, Eq. 11.3.20, yielding

S ]Ax

]x D
k1

5m0H0ikdE
0

`J1~ud!

u
e2uxcos~zu!du. ~73!

Now write cos(zu)5Re(e2 izu) so that

S ]Ax

]x D
k1

5m0H0ikd ReS E
0

`J1~ud!

u
e2zuduD , ~74!

where z5x1 iz. Using another standard integral~Ref. 14,
Eq. 6.623 no. 3! gives

S ]Ax

]x D
k1

5m0H0ikd ReSAz21d22z

d D , ~75!
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from which it is simple, using Eq.~20!, to find

pk1~z!522H0ikAd22z2. ~76!

This highest order term in the series expansion ofp behaves
as expected;pk1 is even inz and tends to zero at the crac
edge.

The calculation ofpk2 proceeds similarly; by evaluating
Eq. ~70! with ‘‘current source’’J k2. From Eqs.~66! and
~59!,

J k2~z!52H0k
2uzu ~77!

and the inner integral of Eq.~70! is now

E
0

t w

At22w2
dw5t. ~78!

The remaining two integrals in Eq.~70! are evaluated by
noting that in the plane of the cracke2ux51 and reversing
the order of integration. The resulting integral is~Ref. 14,
Eq. 6.671 no. 2!

E
0

`

J0~ tu!cos~zu!du5
1

At22z2
, z,t, ~79!

which yields

F S ]Ax

]x D
k2
G
x50

52
2m0k

2H0

p E
z

d t2

At22z2
dt, z,t. ~80!

The integral of Eq.~80! may be evaluated by the change o
variablet5z cosh x. From Eq.~20! we finally obtain

pk2~z!5
2H0k

2

p
dFAd22z21

z2

d
lnS d1Ad22z2

z D G .
~81!

In order to find the termspk3ln k andpk3, the current sources
J k3ln k andJ k3 are required. The details of their calculatio
are given in Appendix B. It is found that

J k3ln k5
m0H0ik

3d2

4
lnS kd4 D , ~82!

J k35
m0H0ik

3

4 Fd2S 11g2
ip

2 D2z2G . ~83!

In calculatingpk3ln k the integrations follow as forpk1 since
J k3ln k has noz-dependence:

pk3ln k52
H0ik

3

2
lnS kd4 Dd2Ad22z2. ~84!

Lastly, pk3 is found by evaluating Eq.~70! for the current
source given by Eq.~83!. The first term inJ k3 has no
z-dependence and the integrations follow as forpk1. The
second term, however, leads to integrals which have not b
dealt with previously. The inner integral in Eq.~70! for the
second term in Eq.~83! is easily evaluated:

E
0

t w2

At22w2
dw5

pt2

4
. ~85!

The integral with respect tot is then
4096 J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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E
0

d

t3J0~ tu!dt. ~86!

This may be solved by means of the standard integral giv
in Ref. 12, Eq. 11.1.1. The following is obtained:

E
0

d

t3J0~ tu!dt5
d3

u

1

G~21!(k50

`

~2k11!

3
G~k21!

G~k13!
J2k11~ud!. ~87!

The reciprocal of the gamma function, 1/G(z), is an entire
function which possesses simple zeros at the points
which z is an integer less than or equal to zero. This mea
that 1/G(21) is zero and hence all terms in the series fo
which k>2 vanish. Only the first two terms of the series
need be considered, therefore, Equation~87! reduces to

E
0

d

t3J0~ tu!dt5
d3

u

1

G~21! FG~21!

G~3!
J1~ud!

1
3G~0!

G~4!
J3~ud!G . ~88!

Now G(3)52, G(4)56 and

lim«→0

S 1

G~211«! D
S 1

G~«! D
521,

which means that

E
0

d

t3J0~ tu!dt5
d3

2u
@J1~ud!2J3~ud!#. ~89!

The only integral in Eq.~70! which remains to be evaluated
is that with respect tou. This is performed by defining
z5x1 iz ~as in the case ofpk1), using the standard integral
of Ref. 14, Eq. 6.623 no. 3, and taking the real part of th
result. Using Eq.~20! gives

pk3~z!52
H0ik

3

2
Ad22z2Fd2S g1

5

6
2
ip

2 D2
z2

3 G . ~90!

To summarise, the equivalent current dipole density on
two-dimensional surface-breaking crack has been found,
the low-frequency limit, as an asymptotic series whose fir
four non-vanishing terms are given in Eqs.~76!, ~81!, ~84!
and ~90!.

B. Impedance

Equation~4! becomes, for this geometry,

DZ52
1

sI 2E2d

0

Jx
~ i !~z!p~z!dz. ~91!

It can readily be deduced from Eqs.~59!, ~64! and ~91! that
the first four non-vanishing terms in the asymptotic series f
DZ will be

DZ5Zk21Zk31Zk4ln k1Zk41 . . . , ~92!
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where

Zk252
1

sI 2E2d

0

Jk1pk1dz, ~93!

Zk352
1

sI 2E2d

0

@Jk2pk11Jk1pk2#dz, ~94!

Zk4ln k52
1

sI 2E2d

0

Jk1pk3ln kdz, ~95!

Zk452
1

sI 2E2d

0

@Jk3pk11Jk2pk21Jk1pk3#dz. ~96!

The integrals obtained by substituting forJ andp into Eqs.
~93! to ~96! are straightforward to evaluate. Those worthy
note are only those which involvepk2. In that case, evalua-
tion may be performed by splitting the logarithm into a sum
integrating by parts and making the change of variab
z5dsint. It is found that

E
2d

0

z2lnS d1Ad22z2

z D dz5 pd3

12
, ~97!

E
2d

0

z3lnS d1Ad22z2

z D dz5 2d4

6
. ~98!

The terms in the series expansion ofDZ are found to be

Zk252
1

s SH0

I D 2p

2
~kd!2, ~99!

Zk352
1

s SH0

I D 2 4i3 ~kd!3, ~100!

Zk4ln k52
1

s SH0

I D 2p

8
~kd!4lnS kd4 D , ~101!

Zk45
1

s SH0

I D 2F ip2

16
2

p

8 S g1
1

4D1
1

p G~kd!4. ~102!

There is no reason why, in principle, this solution should n
be extended and higher order terms evaluated. The res
obtained so far, however, indicate that the series forp and
DZ are rapidly converging and little improvement in acc
racy would be obtained by proceeding to higher order.

VI. DISCUSSION OF RESULTS

The terms in the series expansion for the impedan
change for the semi-circular, surface-breaking crack, giv
in Eqs. ~44! and ~45!, agree with those obtained indepen
dently by Nair and Rose,5 who also used a formulation valid
for arbitrary frequency and then considered the lo
frequency asymptotics. While our lowest order term in th
series agrees with that of Kincaid,3 the second term differs
by a factor of 5/6. This discrepancy is due to the approxim
tions made by Kincaid in deriving his result.

The analytical results for the dipole density and impe
ance change for the long, surface-breaking crack are c
pared with numerical predictions in the following figure
The numerical calculation is based on a vector-potential
tegral formulation. Details of the vector potential formula
J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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tion and its numerical implementation are given elsewhere,11

with its verification in the high-frequency regime. In Figs. 1
and 2 respectively, the real and imaginary parts of the dipo
density are compared for a crack of depth 1.0 mm and fo
d/d50.1 and 0.2. Very good agreement between the analy
cal and numerical solutions is observed. In Fig. 3, the re
and imaginary parts of the normalized impedance chang
which is defined bys(I /H0)

2DZ, are compared ford/d in
the range 0.0 to 0.4. Ford/d50.4 there is approximately
20% difference between analytically and numerically calcu
lated values of Re(DZ). Agreement between the two sets of
results is, however, extremely good for Im(DZ), even be-
yond d/d50.4. In the numerical calculation, the crack was
divided into 20 sections and a conductivity ofs5106

S m21 was used. Note that the lowest order terms in th
impedance series expansions,Zk2, are purely imaginary for
both examples considered here and the term of next ord
Zk3, has real and imaginary parts of equal magnitude. Th
means that, if only two terms in the series are available, the

FIG. 1. Comparison between the real part of the analytical solution for th
dipole density and the numerically calculated value for a long, surface
breaking crack in the low-frequency limit.

FIG. 2. Comparison between the imaginary part of the analytical solutio
for the dipole density and the numerically calculated value for a long
surface-breaking crack in the low-frequency limit.
4097Harfield, Yoshida, and Bowler
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Im(DZ) is known more accurately than Re(DZ) since both
terms contribute to Im(DZ) but only the second term con
tributes to Re(DZ). Even for a larger number of terms i
follows that, since the dominant term in the series is pur
imaginary, the analytical predictions for Im(DZ) will be
more accurate than those for Re(DZ). This feature is ob-
served in Fig. 3.

In Figs. 4 and 5 we include, for interest, comparisons
numerical and analytical predictions for a long, surfac
breaking crack withd/d up to 2.0 in value.~Ford/d.2.0 the
analytical curve matches numerical predictions extrem
well.! The analytical curve for low-frequency is that derive
in this paper. The analytical predictions for higher freque
cies are derived using a method based on the Geomet
Theory of Diffraction15 and presented elsewhere.16 In Fig. 4,
the real part ofDZ is considered. From the figure it is clea
that the low-frequency theory works well ford/d less than
about 0.5 and the theory for higher frequencies works w

FIG. 3. Comparison between the analytical solution and the numeric
calculated value for the impedance change due to a long, surface-brea
crack in the low-frequency limit.

FIG. 4. Analytical and numerical solutions for the real part of the impe
ance change due to a long, surface-breaking crack.
4098 J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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for d/d greater than about 1.0. This leaves only the sma
intermediate range of frequencies described b
0.5,d/d,1.0 in which neither theory works particularly
well. From Fig. 5, in which predictions for Im(DZ) are
shown, it is seen that the low-frequency theory works we
for d/d<1.0 ~the numerical and analytical predictions agree
to within 8% even ford/d51.0) and the theory for higher
frequencies works well ford/d>1.5. For the imaginary part
of the impedance change, therefore, acceptable analytical
lutions exist for all frequencies except those described b
1.0,d/d,1.5.

VII. CONCLUSION

In this paper, we present a method by which low
frequency solutions for the impedance change due to clos
cracks in metals can be calculated. The crack is treated as
equivalent layer of current dipoles whose field is represente
by an integral over the dipole layer with the appropriate
Green’s function kernel. The formulation is valid for arbi-
trary frequency and the low-frequency solution is found us
ing a perturbation method in which the individual terms in
the series expansion for the dipole density distribution ar
each solutions of Laplace’s equation. Two example solution
are given. The first two terms in the series expansion fo
DZ are calculated for a semi-circular, surface-breakin
crack. The solution agrees with that of an independe
calculation.5 The first four terms in the series expansion fo
DZ are calculated for a long, uniformly deep, surface
breaking crack. The solution agrees well with that of an in
dependent numerical calculation.11

Clearly, this method is suitable for predictingDZ for
closed cracks of geometry other than those considered he
Both surface-breaking and sub-surface cracks can be treat
From Figs. 4 and 5, in which analytical solutions for the
impedance change due to a long crack at both low~presented
here! and higher frequencies~presented in Ref. 16!, are com-
pared with numerical predictions, we conclude that satisfa
tory analytical solutions now exist for most of the range o

ally
king

d-

FIG. 5. Analytical and numerical solutions for the imaginary part of the
impedance change due to a long, surface-breaking crack.
Harfield, Yoshida, and Bowler

ct¬to¬AIP¬license¬or¬copyright,¬see¬http://jap.aip.org/jap/copyright.jsp



od
-

-

re-
values ofd/d. The analytical solutions fail only in the sma
ranges given by 0.5,d/d,1.0 for Re(DZ) and
1.0,d/d,1.5 for Im(DZ).
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APPENDIX A: DUAL INTEGRAL EQUATION
ANALYSIS FOR A LONG, SURFACE-BREAKING
CRACK

The long crack problem can be formulated in terms
the following boundary conditions:

f ~z!1
]2Ax~x,z!

]x2
50, x50,uzu,d, ~A1!

]Ax~x,z!

]x
50, x50,uzu.d, ~A2!

where f (z) is the prescribed incident electric field an
Ax(x,z) is thex-component of the magnetic vector potenti
of the ordered problem in which]Ax(x,z)/]x is a solution
of Laplace’s equation. Since]Ax /]x is an even function
with respect toz, it is anticipated that the general integra
representation will contain a cosine kernel:

]Ax~x,z!

]x
5E

0

`

a~u!e2uxcos~zu!du. ~A3!

This expression is clearly a solution of Laplace’s equatio
Applying the boundary conditions to Eq.~A3! yields the fol-
lowing dual integral equations:

E
0

`

ua~u!cos~zu!du5 f ~z! uzu,d, ~A4!

E
0

`

a~u!cos~zu!du50 uzu.d. ~A5!

These are equations of the Titchmarsh type, which have b
considered in the following form in Ref. 6, Sec. 4.5:

E
0

`

u2k21a~u!cos~xu!du5F~x! 0<x,1, ~A6!

E
0

`

a~u!cos~xu!du50 x.1. ~A7!

Only the cases in whichk50 or 1 are of physical interest
k51 corresponds to the problem currently under consid
ation.

If we write

F~z!5E
0

`

ua~u!cos~zu!du, ~A8!

x~z!5E
0

`

a~u!cos~zu!du, ~A9!
J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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then the dual integral equations given in Eqs.~A4! and~A5!
become

F~z!5 f ~z! uzu,d, ~A10!

x~z!50 uzu.d, ~A11!

for which an elementary solution can be found by a meth
similar to that for the problem of the electrified disc; Beltra
mi’s method~Ref. 6, Sec. 3.5!.

The functiona(u) will be represented in terms of a
functiong(t) by means of the relation

a~u!5E
0

d

g~ t !J0~ tu!dt. ~A12!

Substituting Eq.~A12! into Eq. ~A9! and reversing the order
of integration yields

x~z!5E
0

d

g~ t !E
0

`

J0~ tu!cos~zu!du dt. ~A13!

It is found that~Ref. 6, Eq. 2.1.13!

x~z!5H E
z

d g~ t !

At22z2
dt uzu,d

0 uzu.d.

~A14!

From Eq.~A8! we can write

F~z!5
]

]zE0
`

a~u!sin~zu!du. ~A15!

Substituting fora(u) and interchanging the order of integra
tion as before gives

F~z!5
]

]zE0
d

g~ t !E
0

`

J0~ tu!sin~zu!du dt. ~A16!

Integrating with respect tou ~Ref. 6, Eq. 2.1.14! gives

F~z!55
]

]zE0
z g~ t !

Az22t2
dt uzu,d

]

]zE0
d g~ t !

Az22t2
dt uzu.d.

~A17!

It follows that Eq. ~A12! will give a solution of the dual
integral equations provided thatg(t) is a solution of the in-
tegral equation

]

]zE0
z g~ t !

Az22t2
dt5 f ~z! uzu,d. ~A18!

The functiong(t) is given by~Ref. 6, Eq. 2.3.7!

g~ t !5
2t

p E
0

t f ~w!

At22w2
dw. ~A19!

The solution of the dual integral Eqs.~A4! and~A5! is, there-
fore, given by Eq.~A12!, with g(t) given by Eq.~A19!.

Substituting these results into the general integral rep
sentation for]Ax(x,z)/]x, Eq. ~A3!, the following triple
integral is obtained:
4099Harfield, Yoshida, and Bowler
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]Ax~x,z!

]x
5
2

pE0
`E

0

dE
0

t f ~w!

At22w2
tJ0~ tu!e2ux

3cos~zu!dw dt du. ~A20!

This integral is evaluated for the prescribed incident fiel
f (w), and, from the result, the equivalent current dipole de
sity on the crack can be found.

APPENDIX B: DETERMINATION OF CURRENT
SOURCES

In order to find the termspk3ln k and pk3, the ‘‘current
sources’’ J k3ln k and J k3 are required. Evaluation of
Lk2ln kpk1 reveals terms of order bothk

3ln k andk3. Using
Lk2ln k andpk1, given by Eqs.~57! and ~76! respectively, it
emerges that the determination ofLk2ln kpk1 involves evalu-
ation of an integral of the kind:

E
2d

d
A12~z8/d!2 lnAz22z82dz8. ~B1!

Rewriting Eq.~B1! as follows,

E
2d

d @12~z8/d!2#

A12~z8/d!2
lnAz22z82dz8, ~B2!

and recognising that@12(z8/d)2#5 1
2@T0(z8/d)2T2(z8/d)#

~where the Tn are Chebyshev polynomials of the first kind
and T0(x)51, T2(x)52x221) enables the evaluation of Eq
~B1! by means of the following relation~Ref. 17, Sec. 4.9!.

2
1

pE2a

a 1

A12~x8/a!2
TnS x8a D lnAx22x82dx8

5H alnS 2aDT0S xaD n50,

S anDTnS xaD n51,2, . . . . .

~B3!

This gives

Lk2ln kpk15
H0ik

3d2

4 F lnS kd4 D1
1

2
1S zdD

2G . ~B4!

The term of orderk3 ln k is clearly
4100 J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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~Lp!k3ln k5
H0ik

3d2

4
lnS kd4 D , ~B5!

and, from Eq.~67!,

J k3ln k5
m0H0ik

3d2

4
lnS kd4 D . ~B6!

The remaining terms in Eq.~B4! contribute to (Lp)k3. The
evaluation ofLk2pk1 from Eqs.~58! and ~76! is straightfor-
ward and, combined with the appropriate terms from Eq
~B4! gives

~Lp!k35
H0ik

3

4 Fd2S 11g2
ip

2 D1z2G . ~B7!

From Eq.~68! with Eqs.~59! and ~B7! we find

J k35
m0H0ik

3

4 Fd2S 11g2
ip

2 D2z2G . ~B8!
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