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Four-point direct-current potential drop techniques are well-suited for accurate, nondes-
tructive measurement of material conductivity (or resistivity). From measurements of poten-
tial drop on a large metal plate, the electrical conductivity of the plate can be inferred if the
thickness of the plate and the dimensions of the probe are known. In this work, an
expression for the voltage measured by a four-point probe in contact with a large metal
plate of arbitrary thickness is derived from an analytic series representation of the electric
field in the plate. The position of the voltage pickup points is permitted to be offset with
respect to the current injection points, allowing analysis of colinear, rectangular, and
square-head probes. Analytical asymptotic expressions are derived in the limiting cases
of plates that are thin or thick with respect to the dimensions of the probe. The range of plate
thicknesses for which the asymptotic expressions are valid is determined as a function of
relevant probe dimensions. The results of this study provide a useful guide in selecting
the most appropriate arrangement of probe points for measurement of the electrical conduc-
tivity of large metal plates, depending on the level of accuracy required. Theory is com-
pared with experimental data for measurements made with colinear probes on a variety
of metal plates and very good agreement is obtained.

Keywords: Four-point probe, potential drop measurement, electrical conductivity measurement,
metal plate

1. INTRODUCTION

There is a need for portable instruments that have the ability to measure
material conductivity nondestructively, to high accuracy and preferably
without the need for calibration standards. Applications include metal sort-
ing and alloy identification [1], monitoring the heat treatment of aluminum
alloys [2], and the detection of damage that gives rise to a change in material
conductivity, r, such as thermal damage in aircraft structures [3]. The con-
ductivity of common metals varies by around two orders of magnitude. Cop-
per is highly conductive and lends its name to the International Annealed
Copper Standard (IACS), a measure of conductivity used to compare electri-
cal conductors to a traditional copper-wire standard, in which 100%
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IACS represents r ¼ 58 MS=m. Titanium, for example, has r � 0.58 MS=m
(Table 1). The conductivities of some other common metal alloys are also
given in Table 1.

In a recent study [4], the uncertainties associated with measurement of
electrical conductivity of metal plates using three different electromag-
netic nondestructive measurement methods were compared. It was found
that measurements made using a commercial eddy-current instrument
(Zetec MIZ-21A) and a hand-built eddy-current probe coupled with an
Agilent 4294A impedance analyzer, gave similar levels of uncertainty in
r (� 2% for good conductors) although the commercial instrument per-
formed more poorly for low-conductivity metals such as stainless steel
(for which r � 1 MS=m). A four-point potential drop method performed
best, with uncertainty approximately 0.5% for measurements on brass,
stainless steel, and spring steel. A discussion of possible sources of error
in eddy-current conductivity measurements is given in Ref. [5]. Factors
such as variations in specimen geometry and temperature are important.
In particular, r is strongly dependent on specimen temperature, whereas
microstructural variations such as large grains and local dislocations in
a metal alloy have a much less significant effect. For example, in recent
work on characterization of shot-peened nickel-base superalloys, the
change in r due to residual stresses is described as being small, typically
less than 1% [6].

This article focuses on establishing the accuracy of various theoretical
expressions for the voltage measured using the four-point direct-current
potential drop (DCPD) technique, for different probe–plate configurations.
The accuracy of these expressions directly reflects the accuracy with which
r can be measured.

DCPD measurements have the advantage of being independent of the
magnetic permeability of the metal, so that the technique can be used to
measure the electrical conductivity of ferrous metals, whereas eddy-current
methods cannot. The DCPD method also works well for low-conductivity
materials such as semiconductors [7] and in geophysical applications
[8,9], because the measured potential is inversely proportional to r and,

TABLE 1 Metal Plate Alloys and Conductivity, r, Thickness, T, and Lateral Dimensions, w � l

Plate Alloy r (MS=m) T (mm) w � l (mm) Reference

Brass C26000 16.42� 0.09 5.66� 0.01 615�616 [4]
Aluminum 2024 17.6� 0.2 101� 1 149�202 —
Titanium Ti-6Al-4V 0.58� 0.01 12.47� 0.01 318�331 —
Stainless Steel 316 1.379� 0.007 6.36� 0.01 457�457 [4]
Spring Steel C1074=75 5.50� 0.04 1.57� 0.01 412�412 [4]
Carbon Steel 1018 5.18� 0.04 6.30� 0.02 616�619 [15]
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therefore, the signal-to-noise ratio improves as r decreases. Eddy-current
methods lose accuracy as r decreases.

In Ref. [4], potential drop measurements were made on plates whose
thickness was significantly smaller than the length of the four-point probe,
so that a simple analytic formula could be used to infer the value of r from
the measured potential, V. In this article, the mathematical analysis is gener-
alized to deal with plates of arbitrary thickness with respect to the probe
dimensions for a variety of probe configurations. Initially, a series summation
expression for V is obtained by integrating, between the voltage pickup
points, an analytic expression for the electric field in the plate. The position
of the pickup points is permitted to be offset with respect to the current injec-
tion points, so that both colinear and rectangular arrangements of the probe
points can be modeled. The plate is assumed sufficiently large that edge
effects are negligible. Then, closed-form asymptotic expressions for the
potential drop are derived in two regimes; for plates that are either thick
or thin with respect to the dimensions of the probe. The accuracy of these
asymptotic expressions is investigated as a function of plate thickness and
probe dimensions, for both colinear and rectangular probes, by numerical
comparison with results obtained using the series summation. Explicit
expressions for V are given for colinear, rectangular, and square arrange-
ments of the probe points.

The results of this study provide a useful guide in selecting the most
appropriate arrangement of probe points for measurement of the electrical
conductivity of conductive plates, depending on the level of accuracy
required in the measurement.

As a validation exercise, theory is compared with experimental data for
measurements made with colinear probes on a variety of metal plates. Very
good agreement is obtained.

2. CALCULATION OF DCPD VOLTAGE

Consider the four-point probe arrangement shown in Fig. 1. The DCPD
voltage, V, measured between pickup points at ðp; c;0Þ and ðq; c;0Þ, can
be calculated using the formula

V ¼ �
Z ðq;c;0Þ
ðp;c;0Þ

E � d l ð1Þ

where E denotes the electric field. Choosing the path of integration to be a
straight line joining the pickup points allows Eq. (1) to be written as

V ¼ �
Z q

p

Exðx; c;0Þdx ð2Þ
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The electric field in the plate can be expressed as the superposition of fields
separately associated with each of the current injection/extraction points.
For one current injection wire lying on the axis of a cylindrical coordinate
system, the components of the electric field in the plate due to the
injected current can be expressed in terms of the following series
summations [10]:

EqðrÞ ¼
Iq

2pr

X1
n¼0

1

r3
n

þ 1

ðr 0nÞ
3

" #
ð3Þ

EzðrÞ ¼
I

2pr

X1
n¼0

ðz þ 2nT Þ
r3
n

þ ½z � 2ðn þ 1ÞT �
ðr 0nÞ

3

( )
ð4Þ

In Eqs. (3) and (4), qð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ and z are radial and axial coordinates,

respectively, of a cylindrical coordinate system, centered on the current
wire. I represents the applied direct current. T and r represent the thickness

and conductivity of the plate, respectively. The term rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðz þ 2nT Þ2

q
and r 0n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ½z � 2ðn þ 1ÞT �2

q
. The term containing r0 is, by itself, the

solution for a half-space conductor, in which the current density radiates

FIGURE 1. Four-point probe in contact with a conductive plate, thickness T. The current injection points
are located at ðx; y; zÞ ¼ ð�S;0;0Þ. The voltage pickup points at (p; c;0) and (q; c; 0) can occupy any
plane of constant y. Here they are shown in the plane y ¼ c. I represents the applied direct current.
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uniformly from the point of injection and JrðrÞ ¼ rErðrÞ ¼ I=ð2pr2Þ.
Higher terms represent contributions to the current density due to
internal reflections from the plate surfaces. These contributions act as
though originating at image sources located at (0, 0,� 2nT ), with
n ¼ 1; 2; 3; . . . :

The component of the electric field required for evaluation of the integral
in Eq. (2) can be expressed in terms of Eq as follows:

Exðx; c; 0Þ ¼
ðx þ SÞ

qþ
Eqðqþ;0Þ �

ðx � SÞ
q�

Eqðq�;0Þ ð5Þ

in which q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � SÞ2 þ c2

q
. Now insert Ex as given in Eq. (5) into the

integral of Eq. (2) and make the change of variable X ¼ x � S. Then
Eq. (2) can be written as the sum

V ¼ �Iþ þ I� ð6Þ

where

I� ¼
Z q�S

p�S

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ c2
p EqðX ; c;0ÞdX ð7Þ

From Eq. (3),

Eqðx; y; 0Þ ¼
I

2pr
1

q2
þ 2q

XN
n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ð2nT Þ2

q� �3

8>>><
>>>:

9>>>=
>>>;

ð8Þ

which gives, when substituted into Eq. (7),

I� ¼
I

2pr

Z q�S

p�S

X

ðX2 þ c2Þ3=2
þ 2

XN
n¼1

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ c2 þ ð2nT Þ2

q� �3

8>>><
>>>:

9>>>=
>>>;

dX ð9Þ
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Straightforward evaluation of the integrals in Eq. (9) and use of Eq. (6) gives

V ¼ I

2pr

X1
n¼0

En
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS þ qÞ2 þ c2 þ ð2nT Þ2
q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS � qÞ2 þ c2 þ ð2nT Þ2
q

2
64

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ pÞ2 þ c2 þ ð2nT Þ2

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � pÞ2 þ c2 þ ð2nT Þ2

q
3
75
ð10Þ

where Em is the Neumann factor with properties E0 ¼ 1 and Em ¼ 2,
m ¼ 1; 2; 3; . . . : The expression for V given in Eq. (10) is valid for arbitrary
plate thickness and for a probe whose pickup points may be offset by dis-
tance c from the line of the current injection=extraction points.

Practically, the influence of the plate edges on the electromagnetic field
may give rise to errors when Eq. (10) is applied. For a colinear probe with
equal spacing between the four points, errors due to the proximity of the
plate edges are calculated to be less than 1% if the plate dimensions are
approximately four times greater than the probe length and the probe is
placed centrally on the plate [1]. It has also been shown that errors are
smaller for such a probe placed parallel to the shorter plate dimension
[1,11] and for probes whose pickup points are moved closer to the current
injection points, rather than having the four points equally spaced [11].

There are two limiting regimes in which V can be represented by simple
analytic expressions. These correspond to plates that are either thick or thin
with respect to the dimensions of the probe.

2.1. Thick Plate Asymptote

Taking the limit T !1 in Eq. (10) yields the result for a half-space con-
ductor, V1. All terms in the series cancel except those for n ¼ 0, which
leaves

V1 ¼
I

2pr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS þ qÞ2 þ c2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � qÞ2 þ c2

q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ pÞ2 þ c2

q
2
64

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � pÞ2 þ c2

q
3
75 ð11Þ
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Putting c ¼ 0 in Eq. (11) yields a result that agrees with expressions given in
Ref. [12] and Ref. [7], Section 1.2, for arbitrary separation of colinear probe
points on a half-space conductor.

2.2. Thin Plate Asymptote

Following Uhlir [12], note the relationship

MðkÞ þNðkÞ ¼ 1

k
þ 2 ln k� 2 ln 2þ 2c ð12Þ

in which

MðkÞ ¼ 2
X1
n¼1

1

n
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ k2
p

 !
ð13Þ

NðkÞ ¼ 2p
X1
n¼1

iH
ð1Þ
0 ði2pnkÞ ð14Þ

i ¼
ffiffiffiffiffiffiffi
�1
p

and c ¼ 0:577216 . . . is Euler’s constant [13, Eq. 4.1.32]. Now
rewrite Eq. (10) in the form

V ¼ V1 þ
I

2prT

X1
n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þQ2

þ
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þQ2
�

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ P2

þ
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ P2
�

p
 !

ð15Þ

where V1 is given in Eq. (11), Q� ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � qÞ2 þ c2

q
�=2T , and similarly for

P� . Making use of Eqs. (12) and (13), Eq. (15) can be written

V ¼ � I

2prT
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ qÞ2 þ c2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � qÞ2 þ c2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � pÞ2 þ c2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ pÞ2 þ c2

q
2
64

3
75

8><
>:

� 1

2
NðQþÞ �NðQ�Þ �NðPþÞ þNðP�Þ½ �

)
ð16Þ
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For large jkj, NðkÞ can be written [13, Eq. 9.2.3],

NðkÞ � 2
X1
n¼1

e�2pnkffiffiffiffiffiffi
nk
p ; jkj�!1: ð17Þ

Hence, NðkÞ �! 0 as k �! 1 or, NðQ�Þ and NðP�Þ �! 0 as T �! 0.
From Eq. (16) this leaves the following expression valid in a thin plate
regime, whose range of validity is yet to be determined:

VTP ¼ �
I

2prT
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ qÞ2 þ c2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � qÞ2 þ c2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � pÞ2 þ c2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ pÞ2 þ c2

q
2
64

3
75 ð18Þ

3. EXAMPLES

In this section, two special cases concerning probe configurations in
common usage are examined in detail.

3.1. Colinear, Symmetric Probe

In a colinear four-point probe, all four points are arranged on the same
straight line. Typically the pickup points are placed symmetrically with
respect to the current injection=extraction points. With these restrictions,
c ¼ 0 and p ¼ �q. Also truncating the infinite series to N þ 1 terms,
Eq. (10) reduces to

V LS ¼ I

pr

XN
n¼0

En
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS þ qÞ2 þ ð2nT Þ2
q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS � qÞ2 þ ð2nT Þ2
q

2
64

3
75 ð19Þ

In Fig. 2, a family of curves is plotted, of prV LSS=I versus T=S, for various
values of the ratio of pickup length to current injection length, q=S. From
the figure it is clear that the measured voltage increases with increasing
pickup length q and decreasing plate thickness T. When the plate thickness
is greater than approximately half of the probe length, that is T � S or great-
er, V LS holds a constant asymptotic value.

3.1.1. Thick Plate Asymptote Taking the limit T �!1 in Eq. (19), or putting
c ¼ 0 and p ¼ �q in Eq. (11), yields the result for a half-space conductor,
V LS
1 :

V LS
1 ¼

I

pr
1

ðS þ qÞ �
1

ðS � qÞ

� �
ð20Þ
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For a probe in which the spacing between all four points is equal, then
S � q ¼ a, say, and 2q ¼ a. The expression for V LS

1 reduces to

V LE
1 ¼ �

a

2pra
ð21Þ

in agreement with the results given in Ref. [7, Section 1.2] and Ref. [14,
Chap. 13, Part 5].

3.1.2. Thin Plate Asymptote Following the procedure of Section 2.2, or by
putting c ¼ 0 and p ¼ �q in Eq. (16), Eq. (19) may be written in the form

V LS ¼ � I

prT
ln

S þ q

S � q

� �
� 1

2
NðkþÞ �Nðk�Þ½ �

� �
ð22Þ

in which k� ¼ ðS � qÞ=2T . In the thin plate regime (whose range of validity
is yet to be determined),

V LS
TP ¼ �

I

prT
ln

S þ q

S � q

� �
ð23Þ

FIGURE 2. Dimensionless pickup voltage, prV LSS=I, in the case of a colinear, symmetric probe,
computed from Eq. (19) with N ¼ 1000, for q=S ¼ 1=3 ð0:333Þ;3=5 ð0:600Þ; 5=7 ð0:714Þ;7=9 ð0:778Þ,
and 9=11 ð0:818Þ.

THEORY OF FOUR-POINT MEASUREMENTS ON A METAL PLATE 37



3.1.3. Validity of Asymptotic Formulae In Fig. 3, curves of prV LSS=I
versus T=S are plotted showing the half-space asymptote, Eq. (20), the thin
plate asymptote, Eq. (23), and the result valid for arbitrary plate thickness,
Eq. (19). In this case the probe points are equally spaced; q=S ¼ 1=3. From
Fig. 3 it can be seen that the thin plate asymptotic formula is a good approxi-
mation for T � 0:3S or smaller, whereas that for the thick plate works well
for T � 3S or greater, for equally spaced probe points. The accuracy of these
approximations will now be quantified through numerical comparison with
V given by Eq. (19) with N ¼ 1000.

The percentage difference

V LS � V LS
i

V LS
� 100 ð24Þ

is plotted in Figs. 4 and 5 for i ¼ 1 and TP, respectively, for various values of
q=S. It is clear from visual inspection of the curves in Figs. 4 and 5 that the
accuracy of the asymptotes for any particular plate thickness also depends on
the ratio of the pickup probe separation to the separation of the current input
probes, q=S. The thick plate asymptotic expression becomes more accurate,
for a given plate thickness, as the pickup length increases, that is, as q=S

FIGURE 3. Dimensionless pickup voltage, prV LSS=I, in the case of a colinear, symmetric probe
(q=S ¼ 1=3), computed from Eq. (19) with N ¼ 1000, plotted as a function of T=S. Thin and thick plate
asymptotes computed from Eqs. (20) and (23), respectively, are shown.
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FIGURE 4. Percentage difference between pickup voltages calculated using Eq. (19) and thick
plate asymptote Eq. (20), in the case of a colinear, symmetric probe, as a function of T=S, for
various values of q=S.

FIGURE 5. As for Fig. 4 but for thin plate asymptote Eq. (23).
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increases and the pickup points approach the current input points more clo-
sely. The thin plate asymptotic expression becomes more accurate in the
opposite case, as the pickup points move away from the current input points
(q=S decreases).

In Figs. 6 and 7, curves of constant percentage difference (0.1, 1, 5, and
10%) are plotted for T=S versus q=S, for thick and thin plate asymptotes
respectively. These curves facilitate proper choice of probe dimensions
relative to plate thickness for the level of accuracy required in utilizing
asymptotic Eqs. (20) or (23).

3.1.4. Comparison between Theory and Experimental Data In Fig. 8, theory is
compared with experimental DCPD measurements made on various metal
plates with three different linear, symmetric probes with q=S ¼
0:240; 0:399; and 0:873. Some of the data is taken from Ref. [4] and
[15], in which details of the experimental procedure can be found.
Parameters of the metal plates and probes are given in Tables 1 and 2,
respectively. The measured DCPD voltage, V LS

exp, for various probe and plate
combinations is tabulated (in terms of impedance, V LS

exp=I) in Table 3
and plotted in Fig. 8. There is generally excellent agreement between
theory and experimental data. The small discrepancy between theory and
experiment for the point with T=S ¼ 5:02 (on aluminum) is attributed to
edge effects.

FIGURE 6. Curves of constant percentage difference between pickup voltages calculated using Eq. (19)
and thick plate asymptote Eq. (20), in the case of a colinear, symmetric probe, for T=S plotted versus q=S.
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FIGURE 7. As for Fig. 6 but with thin plate asymptote Eq. (23).

FIGURE 8. Theory and experimental data measured on various metal plates using three different colinear,
symmetric probes. Plate and probe parameters are given in Tables 1–3.
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3.2. Rectangular and Square Probes

In a rectangular four-point probe, the pickup points form one side of the
rectangle and the current injection=extraction points form the opposite side.
With these restrictions, p ¼ �S and q ¼ S, and Eq. (10) reduces to

V R ¼ I

pr

XN
n¼0

En
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2SÞ2 þ c2 þ ð2nT Þ2
q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ ð2nT Þ2
q

2
64

3
75 ð25Þ

In the case of a probe with points arranged on the vertices of a square,
c ¼ 2S and Eq. (25) reduces further to

V S ¼ I

pr

XN
n¼0

En
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2 þ ð2nT Þ2
q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ ð2nT Þ2
q

2
64

3
75 ð26Þ

In Fig. 9, a family of curves is plotted, of prV RS=I versus T=S, for various
values of the ratio of offset length to current injection length, c=ð2SÞ.
From the figure it is clear that the measured voltage increases with decreas-
ing offset length c—as the pickup points approach more closely to the cur-
rent injection points and the aspect ratio of the probe consequently
increases—and as the plate thickness T decreases.

TABLE 2 Probe Half-Length, S, and Half-Pickup-Length, q (see Fig. 1)

Probe S (mm) q (mm)

1 25.454� 0.005 10.157� 0.005
2 38.2� 0.3 9.18� 0.01
3 20.105� 0.005 17.543� 0.005

TABLE 3 Measured DCPD Impedance, V LS
exp=I, and Normalized Plate and Probe Dimensions

Plate Probe T=S q=S V LS
exp=I (lX) Reference prV LS

expS=I

Spring Steel 1 0.0617 0.399 31.2� 0.2 [4] 13.7� 0.1
Brass 2 0.148 0.240 1.64� 0.01 [15] 3.23� 0.03
Brass 1 0.222 0.399 2.90� 0.02 [4] 3.81� 0.03
Carbon Steel 1 0.248 0.399 8.14� 0.06 [15] 3.37� 0.04
Stainless Steel 1 0.250 0.399 30.9� 0.2 [4] 3.39� 0.03
Titanium 3 0.62 0.873 235.8� 0.5 — 8.6� 0.1
Aluminum 3 5.02 0.873 7.13� 0.04 — 7.9� 0.1
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3.2.1. Thick Plate Asymptote Taking the limit T �! 1 in Eq. (25) yields the
result for a half-space conductor, V R

1. All terms in the series cancel except
those for n ¼ 0, which gives

V R
1 ¼

I

pr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2SÞ2 þ c2

q � 1

c

2
64

3
75 ð27Þ

For probe points arranged in a square with side length c,

V S
1 ¼ �

I

2prc
ð2�

ffiffiffi
2
p
Þ ð28Þ

3.2.2. Thin Plate Asymptote Following the procedure of Section 2.2, or by
putting p ¼ �S and q ¼ S in Eq. (18), Eq. (25) may be written in the form

V R ¼ � I

2prT
ln 1þ 2S

c

� �2
" #

�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2SÞ2 þ c2

q
2T

0
@

1
AþN

c

2T

� 	8<
:

9=
; ð29Þ

FIGURE 9. Dimensionless pickup voltage, prV RS=I, in the case of a rectangular probe, computed from
Eq. (25) with N ¼ 1000, for c=S ¼ 2;2=3 ð0:667Þ;2=5 ð0:400Þ;2=7 ð0:286Þ; 2=9 ð0:222Þ, and 2=11 ð0:182Þ.
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In the thin plate regime (whose range of validity is yet to be determined),

V R
TP ¼ �

I

2prT
ln 1þ 2S

c

� �2
" #

ð30Þ

and, for square arrangement of the probe points,

V S
TP ¼ �

I

2prT
ln 2 ð31Þ

3.2.3. Validity of Asymptotic Formulae In Fig. 10, curves of prV RS=I versus
T=S are plotted showing the half-space asymptote, Eq. (27), the thin plate
asymptote, Eq. (30), and the result valid for arbitrary plate thickness, Eq.
(25). In this case c=S ¼ 2 and the probe points are arranged on the vertices
of a square, so in fact the same results can be obtained using Eqs. (28), (31),
and (26). From the figure it can be seen that the thick plate asymptote is a
good approximation for plates with T � 6S ¼ 3c or greater, whereas the thin
plate asymptote works well for plates with T � S ¼ c=2 or less.

The percentage difference defined in Eq. (24), but now for V R
i , is plotted

in Figs. 11 and 12 for i ¼ 1 and TP, respectively, for various values of c=S.

FIGURE 10. Dimensionless pickup voltage, prV RS=I, in the case of a square-head probe (c=S ¼ 2),
plotted as a function of T=S. Thick and thin plate asymptotes computed from Eqs. (27) and (30),
respectively, are shown.
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FIGURE 11. Percentage difference between pickup voltages calculated using Eq. (25) and thick plate
asymptote Eq. (27) as a function of T=S, for various aspect ratios c=ð2SÞ of a rectangular probe.

FIGURE 12. As for Fig. 11 but with thin plate asymptote Eq. (30).
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FIGURE 13. Curves of constant percentage difference between pickup voltages calculated using Eq. (25)
and thick plate asymptote Eq. (27), for T=S plotted versus the aspect ratio of a rectangular probe, c=S.

FIGURE 14. As for Fig.13 but with thin plate asymptote Eq. (30).

46 N. BOWLER



It is clear, from visual inspection of the curves in Figs. 11 and 12, that the
accuracy of the asymptotes for any particular plate thickness also depends
on the aspect ratio of the probe, c=ð2SÞ. The thick plate asymptotic
expression becomes more accurate, for a given plate thickness, as the aspect
ratio decreases, that is, as c=S decreases and the pickup points approach the
current input points more closely. The thin plate asymptotic expression
becomes more accurate in the opposite case, as the pickup points move
away from the current input points (c=S increases).

In Figs. 13 and 14, curves of constant percentage difference (0.1, 1, 5,
and 10%) are plotted for T=S versus q=S, for thick and thin plate asymptotes,
respectively. These curves facilitate proper choice of probe dimensions rela-
tive to plate thickness for the level of accuracy required in utilizing asymp-
totic Eqs. (27) or (30).

4. CONCLUSION

A series solution for the potential drop between two contact points on the
surface of a metal plate of arbitrary thickness is derived, for direct current
injected via two further contact points. Simple analytic expressions are
obtained in two asymptotic regimes; for plates thick or thin with respect to
the probe dimensions. Specific formulas are given for colinear and rectangu-
lar arrangements of the probe points, with numerical assessment of the accu-
racy of the asymptotic expressions for various ratios of plate thickness to
relevant probe dimensions. For both colinear and rectangular probes it is
found that the thick plate asymptotes become more accurate as the pickup
points are moved closer to the current injection points. The thin plate asymp-
totes become more accurate in the opposite case, as the pickup points are
moved further from the current injection points. The results of this study pro-
vide a useful guide in selecting the most appropriate arrangement of probe
points for measurement of the electrical conductivity of metal plates,
depending on the level of accuracy required.

The expressions for the pickup voltage, here developed under the
assumption of applied direct current, are also valid for applied alternating
current when the frequency is below a certain value that is characteristic
of the measurement system [15]. The use of alternating current allows lower
measuring current to be applied to achieve a given sensitivity [1]. This has
the advantage of reducing the risk of heating in the part under test and conse-
quent changes in the material conductivity during the measurement process.
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