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Measurements of alternating current potential drop (ACPD) made at the surface of a
conductive plate can be used to determine, non-destructively, the parameters of the plate
such as its thickness, electrical conductivity and linear effective magnetic permeability.
In order to invert the measured potential drop to yield values for these parameters, a
theoretical model is needed. In this work, closed form analytical expressions are derived
for the ACPD measured between the two voltage electrodes of a four-point probe.
Alternating current is injected and extracted by two current electrodes. The problem is
formulated in terms of a single, transverse magnetic, potential. The exact solution for the
electromagnetic field is expressed in terms of a Green’s function for a plate via the
method of images. The ACPD is also expressed as a sum of contributions from multiple
images. Two series representations are given: one converges more rapidly for plates
which are somewhat thicker than the probe dimensions and the other for plates which are
somewhat thinner. Theoretical expressions for the ACPD in special cases of thick (half
space) and thin conductors are shown to agree with the results presented previously. In
this paper, calculated ACPD values are compared with the experimental data taken on a
titanium plate, in the regime in which the plate thickness is similar to the probe length
and excellent agreement is obtained.

Keywords: four-point probe; alternating current potential drop;
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1. Introduction

Multi-frequency alternating current potential drop (ACPD) measurements can be
used to determine the linear electromagnetic material properties of a conductor,
namely the electrical conductivity and effective permeability (Bowler & Huang
2005a). ACPD has provided the non-destructive evaluation community with a
reliable method for crack sizing (Dover et al. 1981; Michael et al. 1982; Hwang &
Ballinger 1992) and a means of monitoring crack growth during fatigue. In a four-
point measurement, two current electrodes and two voltage electrodes are used.
Typically, though not necessarily, they are arranged in a straight line and contact
with the specimen is made using spring-loaded pins (figure 1). The potential drop is
measured between the voltage electrodes.
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Figure 1. Four-point potential drop measurement system. Alternating current is applied to the
specimen via the outer pair of spring-loaded pins. The potential drop is measured between the
inner pair of pins.
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The potential at a plate depends on the electrode location, plate thickness,
frequency, conductivity and permeability. Absolute four-point measurement of
conductivity can be achieved with the aid of a measurement theory which takes
these factors into account.Within the limitations of an idealizedmodel, inwhich the
external current flows in thin wires normal to the surface of a homogeneous
conductive plate and is injected or extracted at infinitesimal points on its surface, an
exact expression for the field can be determined. The advantage of the exact theory
is that one is not limited to making far field assumptions, thin-plate assumptions or
a uniform local field approximation (Dover et al. 1981; Michael et al. 1982).

The four-point electromagnetic field in a half-space conductor has previously
been derived from a solution expressed in terms of a transverse magnetic (TM)
potential (Bowler 2004a). Predictions of the potential drop at the surface of the
half space have been found from the field and compared with experimental
measurements on thick plates (Bowler 2006a). The exact field for a homogeneous
conductive plate of uniform thickness has also been found (Bowler 2004b) and
comparisons between theory and experimental measurements of ACPD have
been made using a thin-plate approximation (Bowler & Huang 2005a). Here, the
TM potential formulation is used to express the exact field solution in terms of a
Green’s function for a plate. First, the Green’s function for a half-space
conductor is obtained and then that for the plate is derived using the method of
images. The ACPD is similarly expressed as a sum of contributions from multiple
images in the form of a series that converges rapidly for plates whose thickness is
somewhat greater than the probe dimensions. The first term of this series is the
half-space result presented in the work of Bowler (2006a). For plates somewhat
thinner than the probe dimensions, an alternative series based on a Fourier
representation is derived. It is shown how this solution reduces to the thin-plate
solution presented in the work of Bowler & Huang (2005a).

In this paper, calculated ACPD voltage values are compared with the
experimental data taken on a titanium plate whose thickness is approximately
two-thirds of the probe length. For this measurement, neither the half-space
solution nor the thin-plate solution describe the measurements satisfactorily.
Rather, excellent agreement between the experimental data and the series
solutions developed in this work is observed.
Proc. R. Soc. A (2007)



819Four-point ACPD plate theory
(a ) Formulation

As described in the work of Bowler (2006a), the ACPD method measures a
complex voltage, V, which has two contributions,

V Z vC3: ð1:1Þ
The first term, v, is the potential drop between the points on the plate at which
the two voltage electrodes make contact with its surface. The source of v is the
current in the plate injected by the two current electrodes. Generally, v is
complex although, at sufficiently low frequency, v is predominantly resistive
(real). The second term in equation (1.1), 3, is proportional to the inductance of
the measurement circuit. It arises from the changing magnetic flux within the
loop of the measurement circuit (whose height is h in figure 1) due to the time
variation of the applied current, in this case of the form eKiut. 3 is purely
inductive (imaginary) and proportional to the frequency u of the applied current
and to the dimension h. 3 tends to zero as the static limit of direct current is
approached, where V is almost exclusively due to the conductor. The
contribution from 3 becomes larger, and eventually dominates, as u increases.
In order to infer the material parameters from a measurement of V, 3 should be
minimized by keeping h as small as possible. This can be achieved by connecting
the pickup wires to the spring-loaded pins as close to the pin tips as possible and
twisting the wires together in such a way as to minimize the area of the loop.
Strictly, the quantities V, v, 3 and E are complex amplitudes. For brevity, the
time dependence is not shown explicitly in equation (1.1) or in the equations
that follow.

(b ) Direct current potential drop at a half-space conductor

First, consider a simple example, of direct current potential drop at a half-
space conductor, which makes clear the structure of the solution for the more
complicated cases that follow. In the case of direct current, 3Z0 and the
potential at a point on the surface of a half-space conductor due to direct current
injected at one other point on the surface is inversely proportional to the distance
between the injection and the measurement points, r. In fact,

V Z
I

2psr
; ð1:2Þ

or

V Z
I

2ps
f ðrÞ; ð1:3Þ

with

f ðrÞZ 1

r
: ð1:4Þ

In the case of a four-point probe, it is now easy to see that the potential drop
between the pickup points may be written as the sum of four terms—the
potential at each of the two measurement points due to the sources at the current
injection and extraction points. With reference to figure 2,

V ZV1KV2 Z
I

2ps
½f ðr22ÞKf ðr21ÞKf ðr12ÞC f ðr11Þ�: ð1:5Þ
Proc. R. Soc. A (2007)



V1

+ I

− I

V2

r22

r21

r12

r11

V = V1– V2

Figure 2. Arbitrary arrangement of the four electrode points on a conductor surface (plan view).
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In this paper, exact and approximate forms of the function f are derived for
alternating current injected into conductive half space and plate samples.
2. Calculation of 3

With reference to the discussion following equation (1.1), an expression for 3 can
be obtained by integrating the electric field around the loop of the measurement
circuit whose height is h (figure 1), i.e.

3Z#E$dl: ð2:1Þ

For current injected into a conductor by a single wire held perpendicular to the
conductor surface, the electric field in air on the same side of the plate as the wire
may be expressed as the sum of contributions from the conductor itself, E c, and
the wire, Ew,

Es ZEwCEc; rO0; z%0: ð2:2Þ
The electric field due to the wire can be easily obtained by application of
Ampère’s law, with the result

Ew Z ẑ
I

2p
ium0ln r; rO0; z%0: ð2:3Þ

The contribution due to the conductor can be expressed in the following form, as
derived in the work of Bowler (2004b):

Ec Z
I

2ps

ðN
0
g cothðgc=2Þekz ½r̂J1ðkrÞKẑJ0ðkrÞ�dk; z%0: ð2:4Þ

In equations (2.2)–(2.4), r and z are the variables of a cylindrical coordinate
system centred on the current wire and r2Zr2Cz2. In equation (2.4),
gZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Kk2

p
, where the root with positive real part is taken, and Ji(x) is the

ith-order Bessel function of the first kind. k2Ziums, where m is the magnetic
permeability and s is the electrical conductivity of the material. Here, note that
Proc. R. Soc. A (2007)
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Figure 3. A current-carrying wire in contact with a conductive plate.

821Four-point ACPD plate theory
it can easily be shown that E c is conservative (V!E cZ0) and, therefore, does
not contribute to the integral around the closed loop from which 3 is derived
(equation (2.1)). This means that only Ew needs to be considered in the
calculation of 3. In fact, this is true for both of the conductor geometries
considered here (half space and plate), so 3 has the same value for these cases.

For a system of two current-carrying wires in contact with the metal surface at
coordinates (x1, y1, 0) and (x2, y2, 0), the electric field E can be obtained by
superposition of the field due to a single wire,

EðrÞZEwðr1ÞKEwðr2Þ; ð2:5Þ

with riZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKxiÞ2CðyKyiÞ2Cz2

q
, iZ1, 2.

With equations (2.1) and (2.5),

3Z#½Ewðr1ÞKEwðr2Þ�$dl: ð2:6Þ

Considering the form of Ew, equation (2.3), evaluation of the integral in equation
(2.6) is straightforward, yielding

3Z
ium0hI

2p
ln

r22r11

r21r12

� �
; ð2:7Þ

or

3Z
I

2ps
½f3ðr22ÞKf3ðr21ÞKf3ðr12ÞC f3ðr11Þ�; ð2:8Þ

where

f3ðrÞZ
h

mr

k2ln r; ð2:9Þ

and rijZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiKxjÞ2CðyiKyjÞ2

q
denotes the distance from source point i to

voltage measurement point j.
3. Calculation of v

(a ) Transverse magnetic potential formulation

Consider the quasi-static electromagnetic field due to an alternating current
injected into a half space (zR0) or plate (c/2RzR0) by a single conductive wire
normal to the surface (figure 3). (In the mathematical development, the
conductor is located in the space defined by zO0 for algebraic convenience.) In
such an arrangement, the field is TM with respect to the direction of the normal
Proc. R. Soc. A (2007)
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to the surface ðẑÞ and hence can be expressed as

H ZV!½ẑj�; ð3:1Þ
where H is the magnetic field and j is the TM potential. This expression
represents the fact that the magnetic field has no z-component. (That this is true
can be seen more easily by considering the electric field, E. With respect to a
cylindrical coordinate system whose axis coincides with the wire, Er does not
depend on the azimuthal angle and EfZ0. Hence, the z-component of the curl of
the electric field, which is iumHz, is zero.) From Ampère’s law, the quasi-static
electric current density is

J ZV!V!½ẑj�: ð3:2Þ
Assuming that the field varies in time as the real part of exp(Kiut), the magnetic
field satisfies

V!V!HKk2H Z 0; ð3:3Þ
where kZ

ffiffiffiffiffiffiffiffiffiffiffi
iums

p
, taking the root with a positive real part. In the non-conductive

region, kZ0. A governing equation for the TM potential can be obtained by
substituting the magnetic field expression in equation (3.1) into equation (3.3),
using the relation

V!V!hVV$KV2; ð3:4Þ
then operating with ẑ! followed by the transverse divergence Vt, where the
differential operator transverse to the ẑ-direction is given by

Vt ZVKẑ
v

vz
: ð3:5Þ

This gives

ðV2 Ck2ÞV2
tjZ 0: ð3:6Þ

Now define a new potential, J, as follows:

V2
tjðr; zÞZJðr; zÞ; ð3:7Þ

which, from equation (3.6), obeys the Helmholtz equation

ðV2Ck2ÞJZ 0; ð3:8Þ
and seek a solution for J that vanishes far from the injection point.
(b ) Boundary conditions

To determine the boundary conditions, other than the far field requirement,
note from equation (3.2) that

Jz ZKV2
tjZKJ: ð3:9Þ

Assuming that current is injected and extracted at a surface zZ0, then
Jz(r, 0C)Z0, and J(r, 0C)Z0 at every point except the point or points where
current is injected or extracted. In the idealization that considers the current
Proc. R. Soc. A (2007)



823Four-point ACPD plate theory
injected at an infinitesimal point, it is appropriate to use a delta function to
represent the normal surface current density. In order to determine the strength
of the delta-function source, an axially symmetric injection current distributed
over a finite disc with radius r0 is first considered. The current flowing into the
conductor through this surface region can be written in terms of an integral over
the current density as follows:

I Z 2p

ðr0
0

Jzðr; 0CÞr dr; ð3:10Þ

where I is the total current. For extraction or injection at a point, we express the
current density in terms of a delta function d(r) with the propertyðr0

0
dðrÞdrZ 1;

for any positive r0. Thus, for equation (3.10) to hold with the delta-function
representation of the current density,

Jzðr; 0CÞZ
I

2p
dðrÞ=r:

The boundary condition on the potential is therefore

Jðr; 0CÞZK
I

2p
dðrÞ=r: ð3:11Þ

From relation (3.7), boundary condition (3.11) implies that

jðr; 0CÞZK
I

2p
ln r: ð3:12Þ

So, j does not vanish as r/N but, when a second contact point is added for
current extraction creating a dipolar source, the far-field vanishing condition is
satisfied. In a conductive half space (zO0), it is also required that the potential
vanishes as z/N. Later, when considering the case of a plate with no current
injection or extraction points on the upper surface (zZc/2), it will also be
required that J and j vanish on the upper surface. First, however, the solution
for a half-space conductor will be obtained to provide a foundation on which to
build the plate solution.
(c ) Half-space Green’s function solution for J

A solution of Helmholtz equation (3.8) is sought in the case of a half-space
conductor using a Green’s function that satisfies

ðV2Ck2ÞGðr; r 0ÞZKdðrKr 0Þ: ð3:13Þ
The unbounded domain solution of equation (3.13) which vanishes in the far
field, also known as the fundamental solution, is

G0ðr; r 0ÞZ
exp ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CðzKz 0Þ2

q� �

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 CðzKz 0Þ2

q ; ð3:14Þ

where r2ZðxKx 0Þ2CðyKy 0Þ2. For a half space, a Green’s function which
satisfies the same boundary condition as the TM potential is needed, except for
the fact that the current injection or extraction point at the surface does not
Proc. R. Soc. A (2007)
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feature, i.e. G(r,r0)Z0 at zZ0. From the method of images, it is immediately
clear that the following expression:

Gðr; r 0ÞZ
exp ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 CðzKz 0Þ2

q� �

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CðzKz 0Þ2

q K

exp ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 CðzCz 0Þ2

q� �

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CðzCz 0Þ2

q ; ð3:15Þ

satisfies equation (3.13) and vanishes at zZ0. Now, Green’s second theorem may
be invoked to find a relationship between J(r) and G(r,r0). Green’s second
theorem may be written as follows:ð

U

Gðr 0; rÞV02Jðr 0ÞKJðr 0ÞV02Gðr 0; rÞdr 0

Z

ð
S
Gðr 0; rÞ vJðr 0Þ

vn 0 KJðr 0Þ vGðr 0; rÞ
vn 0 dS 0; ð3:16Þ

where the surface S here lies within the conductor, enclosing the half-space
conductive region, U. The coordinate in the direction of the outward normal to
this surface is n0. Applying equations (3.8) and (3.13) to the left-hand side of
equation (3.16), the term in the integrand which contains the delta function
survives to give J(r), whereas other terms cancel. On the right-hand side of
equation (3.16), the first term vanishes since G(r,r 0)Z0 on S. Hence,

JðrÞZ
ð
S0

Jðr 0Þ vGðr 0; rÞ
vz 0

dS 0; ð3:17Þ

where S0 represents the surface at zZ0. Note that a negative sign has vanished
because the positive z-direction is opposite to that of the outward normal from
S0. Further, using equation (3.11),

JðrÞZKI
vGðr 0; rÞ

vz 0

� �
z 0Z0

Z 2I
vG0ðr; r 0Þ

vz

� �
z 0Z0

; ð3:18Þ

gives the solution sought,

JZ
I

2p

z

ðr2 Cz2Þ3=2
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 Cz2

p
K1

� �
eik

ffiffiffiffiffiffiffiffiffi
r2Cz2

p
: ð3:19Þ

Allowing for the differences in notation, this result is in agreement with eqn (32)
in the work of Bowler (2004a). Next, it is shown how the potential drop for a half-
space conductor, vhs, is determined from this result.
(d ) Half-space potential drop, vhs

Combining the following statement of Ohm’s law, which relates the current
density and the electric field,

J ZsE; ð3:20Þ
with relationship (3.2), and applying identities (3.4) and (3.5), it can be seen
that

Et Z
1

s
Vt

vj

vz
: ð3:21Þ
Proc. R. Soc. A (2007)



825Four-point ACPD plate theory
Hence, the potential v at a point Q1 relative to that at another point Q2, both
in the plane zZ0, is found by integrating equation (3.21) from Q2 to Q1,

v Z
1

s

vj

vz

���
Q1

K
vj

vz

���
Q2

� �
: ð3:22Þ

Evidently, the ACPD can be computed directly from vj/vz. The function j can
be found from the solution for J by integration of equation (3.7). Since

V2
tjZVt$VtjZ

r̂

r

v

vr
r

� �
$ r̂

vj

vr

� �
ZJ;

it follows that

vj

vr
Z

1

r

ð
rJ drZ

I

2pr

ð
v

vz

eik
ffiffiffiffiffiffiffiffiffi
r2Cz2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 Cz2

p r dr

where equation (3.18), with equation (3.14), has been used. Putting rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Cz2

p
and r drZr dr gives

vj

vr
Z

I

2pr

ð
z

ik

r
K

1

r2

� �
eikrdr :

Using the followingdefinition of the exponential integral functionE1 (Gradshteyn&
Ryzhik 2000), eqn (2.325.1): ð

ear

r
dr ZKE1ðKarÞ;

and the identity (Gradshteyn & Ryzhik 2000), eqn (2.325.2),ð
ear

r2
dr ZK

ear

r
KaE1ðKarÞ;

gives

vj

vr
Z

I

2pr

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Cz2

p eik
ffiffiffiffiffiffiffiffiffi
r2Cz2

p
Keikz

" #
; ð3:23Þ

in agreement with eqn (38) in the work of Bowler (2004a). The integration
introduces an additive function independent of r chosen to be exp(ikz) in order to
eliminate a singularity at rZ0. As a result, equation (3.23) contains two terms
with singularities at rZ0, which cancel except at zZ0 where the result is
consistent with equation (3.12).

Now integrate expression (3.23) with respect to r, to find

jZ
I

2p

ð
z

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Cz2

p eik
ffiffiffiffiffiffiffiffiffi
r2Cz2

p
drKeikz ln r

" #
:

Putting rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Cz2

p
in the integral, we haveð

z

r2Kz2
eikrdr Z

1

2

ð
1

rKz
K

1

r Cz

� �
eikrdr

ZK
1

2
feikzE1½KikðrKzÞ�KeikzE1½KikðrCzÞ�g:

Hence,

jZK
I

2p

1

2
feikzE1½KikðrKzÞ�KeKikzE1½Kikðr CzÞ�gCeikz ln r

� �
; ð3:24Þ
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and, by differentiating with respect to z, the following is obtained:

vj

vz
ZK

I

2p

eikr

r
C ik

eikz

2
E1½KikðrKzÞ�C eKikz

2
E1½KikðrCzÞ�Ceikz ln r

	 
� �
:

ð3:25Þ
Further, at the surface zZ0,

vj

vz

���
zZ0

ZK
I

2p

eikr

r
C ik½E1ðKikrÞC ln r�

	 

; ð3:26Þ

which is in agreement with the half-space ACPD given by eqn (19) in the work
of Bowler (2006a). Thus, the potential drop can be written in the form of
equation (1.5),

v hs Z
I

2ps
½fhsðr22ÞKfhsðr21ÞKfhsðr12ÞC fhsðr11Þ�; ð3:27Þ

where

fhsðrÞZ
eikr

r
C ik½E1ðKikrÞC ln r�: ð3:28Þ

(e ) Plate solution

For a plate of thickness c/2, an additional boundary condition is needed on the
back surface of the plate,

Jðr; c=2ÞZ 0 and jðr; c=2ÞZ 0: ð3:29Þ
Then, according to elementary image theory, Green’s function is

Gðr; r 0ÞZ
X
n

exp ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 CðzKz 0 CncÞ2

q� �

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CðzKz 0 CncÞ2

q K

exp ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 CðzCz 0KncÞ2

q� �

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 CðzCz 0KncÞ2

q ;

ð3:30Þ
where the summation here and elsewhere is from KN to CN unless otherwise
stated. Proceeding as in the case of the half-space solution, the following
counterpart to equation (3.18) is obtained:

JðrÞZ 2I
X
n

vG0ðr; r 0KncÞ
vz

� �
z 0Z0

: ð3:31Þ

In place of the half-space result, equation (3.19),

JZ
I

2p

X
n

zCnc

½r2CðzCncÞ2�3=2
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CðzCncÞ2

q
K1

� �
eik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CðzCncÞ2

p
: ð3:32Þ

Following the steps detailed in §3d and putting znZzCnc and rnZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2CðzCncÞ2

q
to obtain a more compact expression, we obtain

jZK
I

2p

X
n

�
1

2
eikznE1½KikðrnKznÞ�KeKikznE1½Kikðrn CznÞ�

� �

CsgnðzKncÞeikjzn jln r

�
; ð3:33Þ
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827Four-point ACPD plate theory
whose half-space counterpoint is given in equation (3.24). Equation (3.33) has been
written in such a way that the domain of j has been extended to infinity, to include
all of the virtual images. In this extended space,j is periodic (odd) in zwith period c,
which is the reason for the factor sgn(zKnc). The last term in equation (3.33) is
introduced to eliminate singularities at rZ0, as explained in the discussion following
equation (3.23) in the case of the half space.

Further, j can also be expanded as a cosine series which converges rapidly
when c is small. This line of development is taken up in §3f below.

Taking the derivative of j with respect to z gives
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and, at the plane zZ0,
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where the geometric series has been summed with resultX

n

expðikjncjÞZKik cothðikc=2Þ:

Thus, the potential drop can be written
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In the limit in which c/N, coth(ikc/2)/K1 and in the summations only the term
withnZ0 survives so that thehalf-space result given in equation (3.28) is recovered.

The series in equation (3.37) converges rapidly for thick plates. In the work
of Bowler (2006b), the accuracy of asymptotic half-space expression (3.28) is
investigated thoroughly in the limit of direct current. The results of the
Proc. R. Soc. A (2007)
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investigation are also applicable for frequencies below a certain threshold
frequency, fs (Bowler & Huang 2005a), which bounds a quasi-static regime in
which the measured voltage is predominantly real and approximately constant.
For thin plates, it is more computationally efficient to use an alternative series
representation, described in §3f.

(f ) Fourier series representation for the plate solution

It is possible to make use of the following identity (Sperb 1996):
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to obtain an alternative expression for the result expressed in equations (3.36)
and (3.37). In equation (3.38), K0(z) is the modified Bessel function of the second
kind, of order zero. Casting the plate Green’s function of equation (3.30) in the
form of equation (3.38) and using relations (3.7) and (3.31) give
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At the plate surface zZ0, the cosine term in the summation becomes unity and
the potential drop can be written as in equation (3.36) where now
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(g ) Thin-plate approximation

It is possible to show that only the first term on the right-hand side of equation
(3.40) is significant when the plate thickness c/2 is somewhat smaller than the
separation between the probe points, wrij. Two dimensionless length parameters
are present in the expression: kc and r/c. When r/c[1, the summation term is
smaller than that containing the factor of ln r for all values of k. This can be seen
by considering the asymptotic behaviour of K0. For large argument jzj, the
following asymptotic expansion for K0(z) holds:

KzðzÞZ
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; jarg zj!3p=2; ð3:41Þ
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in which z is fixed, jzj is large and mZ4z2 (eqn (9.7.2) in the work of Abramowitz &
Stegun (1970)). Hence, taking the first term in the above series,

K0ðzÞz
ffiffiffiffiffiffi
p

2z

r
eKz ; jzj[1: ð3:42Þ

For kZ0 and k/0, the terms of the summation on the right-hand side of equation
(3.40) contain the factors exp(K2pnr/c) and exp(Kikr), respectively. These
exponential factors are sufficient to render the summation significantly smaller than
the first term on the right-hand side of equation (3.40) and

ftpðrÞzKik coth
ikc

2

� �
ln r; c=r/1: ð3:43Þ

In the work of Bowler & Huang (2005a), the electrical conductivity, effective
magnetic permeability and the thickness of brass, aluminium, stainless steel, spring
steel and carbon steel plates have been determined by inverting measurement data
using formula (3.43). In the work of Bowler (2006b), the accuracy of this formula is
investigatedas a function of plate thickness andprobepoint separations, in the limit
of zero frequency (direct current). Theoretically speaking, equation (3.43) becomes
more accurate as the pickup points are moved further away from the current input
points, although practically this reduces the strength of the measured voltage,
which may adversely affect the overall accuracy of the measurement.
4. Summary of theoretical results

For ease of reference, the theoretical results developed in the previous sections
are collected and summarized here. In general, the ACPD measured between the
two pickup points of a four-point probe in contact with a conductive surface can
be written as
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where Fk(r) can take several forms. In the case of a half-space conductor, Fhs is
obtained by summing f3, (equation (2.9)) and fhs (equation (3.28)) to give
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This result agrees with eqn (31) in the work of Bowler (2006a). In the case of a
plate, Fp is obtained by summing f3 (equation (2.9)) and either representation for
fp (equation (3.37) or (3.40)) to give
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or
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The first of these summations, equation (4.3), converges more rapidly for thick
plates, whereas the second, equation (4.4), converges more rapidly for thin plates.
Finally, an approximation for plates somewhat thinner than the probe point
separations, Ftp, can be written as a sum of f3 (equation (2.9)) and ftp (equation
(3.43)) to give

FtpðrÞzKik coth
ikc

2
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ln r; c=r/1; ð4:5Þ

in agreement with eqn (9) in the work of Bowler & Huang (2005a).
5. Example calculations

While the theory developed above is applicable for arbitrary relative placement
of the four probe points on the plate surface, in this section a collinear
arrangement of the probe points is considered, with equal separation between the
points. The length of the probe is 2s and the plate thickness is here denoted T
(figure 4). For a discussion of the effects of changing the spacing between the
probe points, for collinear and rectangular point arrangements in the limit of
direct current, see the work of Bowler (2006b).

(a ) Accuracy of the thin-plate approximation

Figure 5 compares the dimensionless pickup voltage psvs/I, plotted as a
function of dimensionless frequency umss2, calculated using the AC plate solution
given by equations (4.1) and (4.3) together and with the thin-plate approximation
of equation (4.5). The contribution to the voltage due to induction in the pickup
circuit (f3) is excluded from this comparison by putting hZ0. Also shown is the DC
plate solution presented in the work of Bowler (2006b), which may be obtained by
taking the limit k/0 either in equation (4.3) or in equation (4.4),

lim
k/0

FpðrÞZ
X
n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 Cð2nTÞ2

q : ð5:1Þ

Comparisons are shown for a plate with the same thickness as the probe length,
TZ2s, and for a plate with thickness one-quarter of the probe length, TZs/2. For
the thicker plate, only one term in the series in equation (4.3) was required for
convergence, i.e. NZ0 and the system behaves as a half space. For the thinner
plate, NZ25 for 2% accuracy in the calculation. From the figure, it can be seen
that there is a quasi-static regime in which the AC voltage agrees with that of the
DC limit. The upper bound of this regime depends on the plate thickness. The
thin-plate approximation matches the voltage calculated using the full plate
solution quite well (to within 2.5%) for TZs/2, whereas for TZ2s the thin-plate
approximation underestimates the voltage by around 50%.
Proc. R. Soc. A (2007)



Figure 4. Collinear probe with length 2s and equally spaced probe points.
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Figure 5. Dimensionless pickup voltage, psvs/I, as a function of dimensionless frequency, umss2, in
the case of a collinear probe with equal point spacing, for TZ2s and TZ2/s.
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Figure 6. Percentage difference between pickup voltages calculated using the full plate solution
given in equation (4.3) and thin-plate approximation (4.5), for various ratios of the probe length 2s
to the plate thickness T. N is the number of terms required in the series of equation (4.3) to give
accuracy G0.03 in the plotted percentage hZ0.
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The agreement between the thin-plate approximation and the full plate
solution is investigated further in figure 6, where the percentage difference
defined,

FpKFtp

Fp

!100; ð5:2Þ

is plotted as a function of frequency for various plate thicknesses. The largest
difference between the theoretical values occurs in the real part of the voltage in
the quasi-static regime (the low-frequency asymptote). The percentage difference
for each plate thickness considered is listed in table 1. It is clear that the thin-
plate approximation can be used to better than 1% accuracy for plates whose
thickness is one-fifth or less of the probe length, for this case of equal electrode
spacing in a collinear probe.
Proc. R. Soc. A (2007)



Table 1. Difference between the full plate solution and the thin-plate approximation. Quasi-static
voltage values are compared. T/(2s) is the ratio of the plate thickness to the probe length. The
probe is a collinear probe with equal electrode spacing. N is the number of terms required in the
series of equation (4.3) to give accuracy G0.03 in the percentage difference.

T/(2s) N difference (%)

1 0 54
1/2 (0.5) 10 23
1/3 (0.333) 15 7.8
1/4 (0.25) 25 2.5
1/5 (0.2) 30 0.80

Table 2. Number of terms required for convergence of series solutions. Number of terms, N, needed
in each of the series in equations (4.3) and (4.4) to give agreement within 0.1% in the calculated
potential drop for a probe with equally spaced points in contact with a conductive plate with
thickness T.

T/(2s) N, series (4.3) N, series (4.4)

1 3 7
3/4 (0.75) 4 4
1/2 (0.5) 6 3
1/3 (0.333) 8 2
1/4 (0.25) 10 1
1/5 (0.2) 12 1

833Four-point ACPD plate theory
(b ) Convergence of Fourier series expansion

In table 2, the number of terms required to give 0.1% agreement between
potential drops calculated using the alternative series expansions (4.3) and (4.4)
are given for a variety of plate thicknesses. Again, the probe points are collinear
and equally spaced. It is clear from the table that a similar number of terms are
needed in each series for a plate with thickness approximately three-quarters the
probe length. Either side of this thickness, the number of terms needed for
convergence of each of these series differs significantly. For larger T, computation
of the series in equation (4.3) is more efficient. For smaller T, equation (4.4)
should be used.
6. Experimental validation of the theory

Experimental validations have already been performed in the thin-plate regime
(Bowler & Huang 2005a) and for a conductive half space (Bowler 2006a). In
figure 7, the experimental data are compared with the theory for a titanium plate
whose thickness is similar to the length of a collinear probe, T/(2s)z2/3.
The probe and the plate parameters are given in tables 3 and 4, respectively. The
lateral dimensions of the plate are large, to avoid the influence of the plate edges
on the measurements. Details of the experimental procedure for the ACPD
Proc. R. Soc. A (2007)
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Figure 7. Impedance (V/I ) measured by a collinear four-point probe (table 3) in contact with a
titanium plate (table 4), compared with the theory expressed in equation (4.3) (with NZ12) and
the thin-plate approximation of equation (4.5), as a function of frequency. The solution for a half-
space conductor is also shown (equation (4.2)).
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measurements are available in the works of Bowler & Huang (2005a,b). There is
very good agreement between the AC plate theory expressed in equations (4.1)
and (4.3), NZ12, and the experimental data. The value of h, the vertical
dimension of the pickup loop from the surface of the test piece, has been adjusted
in the theory to give the best fit to the imaginary part of the experimental data.
The value obtained, hZ0.39 mm, is similar to that measured physically. There
are no adjustable parameters in the calculation of the real part of the impedance.
Also shown in figure 7 are the theoretical curves calculated for a conductive half
space (equation (4.2)) and using the thin-plate approximation (4.5). It is clear
that this experiment occupies a regime in which neither of those solutions agrees
well with the experimental data. Rather, the solution for arbitrary plate
thickness is validated successfully.
Proc. R. Soc. A (2007)



Table 3. Probe parameters (for a collinear probe with length 2s.)

2s (mm) voltage electrode separation (mm) h (mm) (fitted value)

18.49G0.005 6.16G0.005 0.39G0.01

Table 4. Plate parameters. Conductivity, s; thickness, T and lateral dimensions w!d. s was
measured in the work of Bowler (2006b) via the four-point probe method described in the work of
Bowler & Huang (2005b). The plate thickness was determined from the average of several
measurements using digital callipers.

metal alloy s (MSmK1) T (mm) w!d (mm)

titanium Ti-6Al-4V 0.58G0.01 12.47G0.01 318!331

835Four-point ACPD plate theory
7. Conclusion

Analytic solutions are derived for the complex potential drop measured between
the two points of a four-point probe placed on the surface of a homogeneous
metal plate. Alternating current is injected into the plate via the other two
probe points. The relative arrangement of the four probe points is not restricted
in the theoretical development. Two series solutions are derived. The first
converges rapidly for plates that are somewhat thicker than the separation of
the probe points and reduces to the solution for a half-space conductor. The
second converges rapidly for plates somewhat thinner than the separation of the
probe points.

The existence of these analytic solutions permits non-destructive determina-
tion of the plate thickness, electrical conductivity and linear effective magnetic
permeability by inversion of measured data. Briefly, from a single spectrum of
measured ACPD data, either the plate thickness or its conductivity can be
inferred from the low-frequency (quasi-static) portion of the spectrum, in which
the measured voltage is real, constant and independent of magnetic permeability
(Bowler & Huang 2005b). Then, higher-frequency data can be inverted to obtain
a value for the linear effective magnetic permeability (Bowler & Huang 2005b).

The authors acknowledge the assistance of J. T. Brown in obtaining the experimental data shown in
figure 7. This work was supported by the NSF Industry/University Cooperative Research Program.
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